Deflection of coronal mass ejection in the interplanetary medium
- 212 Downloads
- 70 Citations
Abstract
A solar coronal mass ejection (CME) is a large-scale eruption of plasma and magnetic fields from the Sun. It is believed to be the main source of strong interplanetary disturbances that may cause intense geomagnetic storms. However, not all front-side halo CMEs can encounter the Earth and produce geomagnetic storms. The longitude distribution of the Earth-encountered front-side halo CMEs (EFHCMEs) has not only an east–west (E–W) asymmetry (Wang et al., 2002), but also depends on the EFHCMEs' transit speeds from the Sun to 1 AU. The faster the EFHCMEs are, the more westward does their distribution shift, and as a whole, the distribution shifts to the west. Combining the observational results and a simple kinetic analysis, we believe that such E–W asymmetry appearing in the source longitude distribution is due to the deflection of CMEs' propagation in the interplanetary medium. Under the effect of the Parker spiral magnetic field, a fast CME will be blocked by the background solar wind ahead and deflected to the east, whereas a slow CME will be pushed by the following background solar wind and deflected to the west. The deflection angle may be estimated according to the CMEs' transit speed by using a kinetic model. It is shown that slow CMEs can be deflected more easily than fast ones. This is consistent with the observational results obtained by Zhang et al. (2003), that all four Earth-encountered limb CMEs originated from the east. On the other hand, since the most of the EFHCMEs are fast events, the range of the longitude distribution given by the theoretical model is E40°,W70°, which is well consistent with the observational results (E40°,W75°).
Keywords
Coronal Mass Ejection Geomagnetic Storm Observational Result Interplanetary Medium Parker SpiralPreview
Unable to display preview. Download preview PDF.
References
- Bartsch, R.: 1973, Solar Phys. 30, 93.Google Scholar
- Burlage, L., Sittler, E., Mariani, F., and Schwenn, R.: 1981, J. Geophys. Res. 86, 6673.Google Scholar
- Cane, H. V.: 1988, J. Geophys. Res. 93,1.Google Scholar
- Cane, H. V. and Richardson, I. G.: 2003, J. Geophys. Res. 108, 1156.Google Scholar
- Cane, H. V., Richardson, I. G., and St. Cyr, O. C.: 2000, Geophys. Res. Lett. 27, 3591.CrossRefGoogle Scholar
- Farrugia, C. J., Burlaga, L. F., Osherovich, V. A., Richardson, I. G., Freeman, M. P., Lepping, R. P., and Lazarus, A. J.: 1993, J. Geophys. Res. 98, 7621.Google Scholar
- Gopalswamy, N., Lara, A., Lepping, R. P., Kaiser, M. L., Berdichevsky, D., and St. Cyr, O. C.: 2000, Geophys. Res. Lett. 27, 145.CrossRefGoogle Scholar
- Gosling, J. T.: 1990, in C.T. Russel, E. R. Priest and L. C. Lee (eds.), Coronal Mass Ejections and Magnetic Flux Ropes in Interplanetary Space. Physics of Magnetic Flux Ropes, AGU Geophys. Mon. 58, p. 343.Google Scholar
- Gosling, J. T.: 1996, Annu. Rev. Astron. Astrophys. 34, 35.CrossRefGoogle Scholar
- Gosling, J. T., McComas, D. J., Phillips, J. L., and Bame, S. J.: 1991, J. Geophys. Res. 96, 731.Google Scholar
- Harrison, R. A.: 1986, Astron. Astrophys. 162, 283.Google Scholar
- Heras, A. M., Sanahuja, B., Shea, M. A., and Smart, D. F.: 1990, Solar Phys. 126, 371.Google Scholar
- Hirschberg, J., Bame, S. J., and Robbins, E. E.: 1972, Solar Phys. 23, 467.Google Scholar
- Howard, R. A., Michels, D. J., Sheeley, Jr., N. R., and Koomen, M. J.: 1982, Astrophys. J. 263, L101.CrossRefGoogle Scholar
- Howard, R. A., Sheeley, Jr., N. R., Koomen, M. J., and Michels, D. J.: 1985, J. Geophys. Res. 90, 8173.Google Scholar
- Hundhausen, A. J.: 1988, in V. Pizzo, T. E. Holzer, and D. G. Sime (eds.), Proceedings of the Sixth International Solar Wind Conference. Boulder, pp. 181–214.Google Scholar
- Hundhausen, A. J.: 1993, J. Geophys. Res. 98, 13177.Google Scholar
- Joshi, A.: 1995, Solar Phys. 157, 315.Google Scholar
- Maunder, A. S. D.: 1907, Monthly Notices Royal Astron. Soc. 67, 451.Google Scholar
- McAllister, A. H., Dryer, M., McIntosh, P., Singer, H., and Weiss, L.: 1996, J. Geophys. Res. 101Google Scholar
- Meunier, N.: 2003, Astron. Astrophys. 405, 1107.CrossRefGoogle Scholar
- Neugebauer, M. and Goldstein, R.: 1997, in N. Crooker, J. A. Joselyn, and J. Feynman, J. (eds.), Coronal Mass Ejections. Washington D.C., pp. 245.Google Scholar
- Parker, E. N.: 1963, Interplanetary dynamical processes.Wiley Interscience, New York.Google Scholar
- Plunkett, S. P., Thompson, B. J., St. Cyr, O. C., and Howard, R. A.: 2001, J. Atmospheric Terrest. Phys. 63, 389.CrossRefGoogle Scholar
- Richardson, I. G. and Cane, H. V.: 1995, J. Geophys. Res. 100, 23397.CrossRefGoogle Scholar
- Sheeley, Jr., N. R., Howard, R. A., Koomen, M. J, Michels, D. J., Schwenn, R., Mulhauser, K. H., and Rosenbauer, H.: 1985, J. Geophys. Res. 90, 163.Google Scholar
- St. Cyr, O.C., Howard, R.A., Sheeley,Jr. N.R., Plunkett, S.P., Michels, D.J., Paswaters, S.E., Koomen, M. J., Simnett, G. M., Thompson, B. J., Gurman, J. B., Schwenn, R., Webb, D. F., Hildner, E., and Lamy, P. L.: 2000, J. Geophys. Res. 105, 18169.CrossRefGoogle Scholar
- Wang, Y. M., Ye, P. Z., and Wang, S.: 2003, J. Geophys. Res. 108, 1370.Google Scholar
- Wang, Y. M., Ye, P. Z., Wang, S., Zhou, G. P., and Wang, J. X.: 2002, J. Geophys. Res. 107, 1340.Google Scholar
- Webb, D. F., Cliver, E. W., Crooker, N. U., St. Cyr, O. C., and Thompson, B. J.: 2000, J. Geophys. Res. 105, 7491.CrossRefGoogle Scholar
- Webb, D. F., Forbes, T. G., Aurass, H., Chen, J., Martens, P., Rompolt, B., Rusin, V., Martin, S. F., and Gaizauskas, V.: 1994, Solar Phys. 153, 73.Google Scholar
- Zhang, J., Dere, K. P., Howard, R. A., and Bothmer, V.: 2003, Astrophys. J. 582, 520.CrossRefGoogle Scholar
- Zhou, G., Wang, J., and Cao, Z.: 2003, Astron. Astrophys. 397, 1057.CrossRefGoogle Scholar