Advertisement

Solar Physics

, Volume 222, Issue 2, pp 191–197 | Cite as

New values of gravitational moments J2 and J4 deduced from helioseismology

  • R. Mecheri
  • T. Abdelatif
  • A. Irbah
  • J. Provost
  • G. Berthomieu
Article

Abstract

By applying the theory of slowly rotating stars to the Sun, the solar quadrupole and octopole moments J2 and J4 were computed using a solar model obtained from CESAM stellar evolution code (Morel, 1997) combined with a recent model of solar differential rotation deduced from helioseismology (Corbard et al., 2002). This model takes into account a near-surface radial gradient of rotation which was inferred and quantified from MDI f-mode observations by Corbard and Thompson (2002). The effect of this observational near-surface gradient on the theoretical values of the surface parameters J2, J4 is investigated. The results show that the octopole moment J4 is much more sensitive than the quadrupole moment J2 to the subsurface radial gradient of rotation.

Keywords

Quadrupole Moment Surface Parameter Recent Model Differential Rotation Stellar Evolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armstrong, J. and Kuhn, J. R.: 1999, Astrophys.J. 525, 533.CrossRefGoogle Scholar
  2. Corbard, T. and Thompson, M. J.: 2002, Solar Phys. 205, 211.CrossRefGoogle Scholar
  3. Corbard, T., Dikpati, M., Gilman, P. A., and Thompson, M. J.: 2002, in A. Wilson (ed.), The SOHO 11 Symposium on From Solar Min to Max: Half a Solar Cycle with SOHO, Davos, Switzerland, ESA SP-508, Noordwijk: ESA Publications Division, ISBN 92-9092-818-2, p. 75.Google Scholar
  4. Dikpati, M., Corbard, T., Thompson, M. J., and Gilman, P. A.: 2002, Astrophys.J. 575, 41.CrossRefGoogle Scholar
  5. Godier, S. and Rozelot, M. J.: 1999, Astron. Astrophys. 350, 310.Google Scholar
  6. Godier, S. and Rozelot, M. J.: 2000, Astron. Astrophys. 355, 365.Google Scholar
  7. Gough, D. O.: 1982, Nature 298, 334.Google Scholar
  8. Kosovichev, A. G.: 1996, Astrophys.J. 469, 61.CrossRefGoogle Scholar
  9. Kuhn, J. R., Bush, R. I., Scheick, X., and Scherrer, P.: 1998, Nature 392, 155.CrossRefGoogle Scholar
  10. Lydon, T. J. and Sofia, S.: 1996, Phys.Rev.Letter s76, 177.CrossRefGoogle Scholar
  11. Morel, P.: 1997, Astron. Astrophys. 124, 597.Google Scholar
  12. Paternò, L., Sofia, S., and Di Mauro, M. P.: 1996, Astron. Astrophys. 314, 940.Google Scholar
  13. Pijpers, F. P.: 1998, Monthly Notices Royal Astron. Soc. 297, 76.CrossRefGoogle Scholar
  14. Roxburgh, I. W.: 2001, Astron. Astrophys. 377, 688.CrossRefGoogle Scholar
  15. Rozelot, J. P., Godier, S., and Lefebvre, S.: 2001, Solar Phys. 198, 223.CrossRefGoogle Scholar
  16. Rozelot, J. P. and Rösch, J.: 1997, Solar Phys. 192, 11.CrossRefGoogle Scholar
  17. Scherrer, P. H. et al.: 1995, Solar Phys. 162, 129.Google Scholar
  18. Snodgrass, H. B.: 1992, in K. L. Harvey (ed.) ASP Conf. Serf. 27, The Solar Cycle,ASP, San Francisco, p. 205.Google Scholar
  19. Thuillier, G., Joukoff, A., and Schmutz, W.: 2003, Proc. ISCS 2003 Symposium, Solar Variability as an Input to the Earth's Environment, Tatranská Lomnica, Slovakia, 23–28 June 2003, ESA SP-535.Google Scholar
  20. Ulrich, R. K. and Hawkins, G. W.: 1981a, Astrophys.J. 246, 985.CrossRefGoogle Scholar
  21. Ulrich, R. K. and Hawkins, G. W.: 1981b, Astrophys.J. 249, 831, Erratum.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • R. Mecheri
    • 1
  • T. Abdelatif
    • 1
  • A. Irbah
    • 1
  • J. Provost
    • 2
  • G. Berthomieu
    • 2
  1. 1.C.R.A.A.G - Observatoire d'Alger BP 63 BouzareahAlgerAlgerie
  2. 2.Departement CassiniUMR CNRS 6529 - Observatoire de la C^ote d'AzurAlgerie

Personalised recommendations