Advertisement

Solar Physics

, Volume 218, Issue 1–2, pp 99–122 | Cite as

Automatic Extraction of Filaments in Hα Solar Images

  • Frank Y. Shih
  • Artur J. Kowalski
Article

Abstract

This paper presents a new method which allows for the automatic extraction and tracking of the evolution of filaments in solar images. Series of Hα full-disk images are taken in regular time intervals to observe the changes of the solar disk features. In each picture, the solar chromosphere filaments are identified for further evolution examination. Two alternative preprocessing techniques converting grayscale images into black-and-white pictures with enhanced chromosphere granularity are examined: local thresholding based on median values and global thresholding with brightness and area normalization. The next step employs morphological closing operations with multi-directional linear structuring elements to extract elongated shapes in the image. After logical intersection of directional filtering results, remaining noise is removed from the final outcome using morphological dilation and erosion with a circular structuring element. Experimental results show that the developed technique can achieve excellent results in detecting large filaments and good detection rates for small filaments.

Keywords

Solar Disk Grayscale Image Automatic Extraction Large Filament Circular Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cleveland, F., Malcolm, W., Nordell, D. E., and Zirker, J.: 1992, IEEE Trans. Power Delivery 7, 460.Google Scholar
  2. Denker, C., Johannesson, A., Marquette, W., Goode, P. R., Wang, H., and Zirin, H.: 1999, Solar Phys. 184, 87.Google Scholar
  3. Dougherty, E. R.: 2001, J. Math. Imaging Vision 14, 39.Google Scholar
  4. Dougherty, E. R. and Chen, Y.: 1999, in E. Dougherty and J. Astola (eds.), Nonlinear Filtering for Image Processing, SPIE and IEEE Presses, Bellingham, p. 121.Google Scholar
  5. Gao, J., Wang, H., and Zhou, M.: 2002, Solar Phys. 205, 93.Google Scholar
  6. Gonzalez, R. C. and Woods, R. E.: 1992, Digital Image Processing, Addison-Wesley Publishing Co., Inc., Reading, Massachusetts, pp. 443, 518.Google Scholar
  7. Irbah, A., Bouzaria, M., Lakhal, L., Moussaoui, R., Borgnino, J., Laclare, F., and Delmas, C.: 1999, Solar Phys. 185, 255.Google Scholar
  8. Krejčí, R., Flusser J., and Šimberová, S.: 1998, Proceedings of the Fourteenth International Conference on Pattern Recognition, Vol. 2, IEEE Computer Society Press, p. 1765.Google Scholar
  9. Martens, P. C. and Zwaan, C.: 2001, Astrophys. J. 558, 872.Google Scholar
  10. Molina, R., Nunez J., Cortijo, F. J., and Mateos, J.: 2001, IEEE Signal Proc. Magazine 18, 11.Google Scholar
  11. Neckel, H. and Labs, D.: 1984, Solar Phys. 90, 205.Google Scholar
  12. Neckel, H. and Labs, D.: 1994, Solar Phys. 153, 91.Google Scholar
  13. Orriols, X., Toledo, R., Binefa, X., Radeva, P., Vitria, J., and Villanueva, J. J.: 2000, Proceedings of the 15th International Conference on Pattern Recognition (ICPR'00), Vol. 3, IEEE Computer Society Press, p. 1006.Google Scholar
  14. Preminger, D. G., Walton, S. R., and Chapman, G. A.: 2001, Solar Phys. 202, 53.Google Scholar
  15. Russ, J. C.: 1999, The Image Processing Handbook, CRC Press LLC, Boca Raton, Florida, p. 460.Google Scholar
  16. Shih, F. Y. and Mitchell, O. R.: 1989, IEEE Trans. Pattern Anal. Machine Intelligence 11, 31.Google Scholar
  17. Shih, F. Y. and Pu, C. C.: 1995, IEEE Trans. Signal Processing 43, 539.Google Scholar
  18. Shih, F. Y. and Puttagunta, P.: 1995, IEEE Trans. Image Processing 4, 1027.Google Scholar
  19. Shih, F. Y., King, C. T., and Pu, C. C.: 1995, IEEE Trans. Image Processing 4, 11.Google Scholar
  20. Soille, P., Breen, E. J., and Jones, R: 1996, IEEE Trans. Pattern Anal. Machine Intelligence 18, 562.Google Scholar
  21. Toledo, R., Orriols, X., Binefa, X., Radeva, P., Vitria J., and Villanueva, J. J.: 2000, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Vol. 1, IEEE Computer Society Press, p. 157.Google Scholar
  22. Turmon, M. J. and Mukhtar, S.: 1997, Proceedings of the International Conference on Image Processing, Vol. 3, IEEE Computer Society Press, p. 320.Google Scholar
  23. Walter, T., Klein, J.-C., Massin, P., and Zana, F.: 2000, First International Workshop on Computer Assisted Fundus Image Analysis (CAFIA), Copenhagen.Google Scholar
  24. Webb, D. F.: 2000, IEEE Trans. Plasma Sci. 28, 1795.Google Scholar
  25. Zana, F. and Klein, J.-C.: 1999, IEEE Trans. Medical Imaging 18, 419.Google Scholar
  26. Zana, F. and Klein, J.-C.: 2001, IEEE Trans. Image Processing 10, 110.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Frank Y. Shih
    • 1
  • Artur J. Kowalski
    • 1
  1. 1.Computer Vision LaboratoryCollege of Computing Sciences, New Jersey Institute of TechnologyNewarkU.S.A

Personalised recommendations