Identification and Inference for Multivariate Cointegrated and Ergodic Gaussian Diffusions

  • M. Kessler
  • A. Rahbek


Inference is considered in the multivariate continuous time Gaussian Ornstein-Uhlenbeck (OU) model on the basis of observations in discrete time. Under the hypothesis of ergodicity as well as cointegration, the classical identification or ‘aliasing’ problem is re-addressed and new results given. Exact conditions are given for (i) identification of individual parameters, as well as results for, (ii) identification of rank and cointegration parameters, and, furthermore (iii) for the existence of a continuous time OU process which embeds a discrete time vector autoregression. Estimation and cointegration rank inference are discussed. An empirical illustration is given in which the ‘cost-of-carry’ hypothesis is investigated.

diffusion processes cointegration continuous time identification matrix exponential 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bergstrom, A. R.: Continuous Time Econometric Modelling, Oxford University Press, Oxford, 1990.Google Scholar
  2. Brenner, R. J. and Kroner, K. F.: Arbitrage, cointegration, and testing the unbiasedness hypothesis in financial markets, J. Financ. Quant. Anal. 30(1) (1995), 23-42.CrossRefGoogle Scholar
  3. Campbell, J., Lo, A. W. and MacKinlay, A. C.: The Econometrics of Financial Markets, Princeton University Press, Princeton, NJ, USA, 1997.MATHGoogle Scholar
  4. Chambers, M. J.: Discrete time representation of stationary and non-stationary continuous time systems, J. Econ. Dyn. Control 23 (1999), 619-639.MATHMathSciNetCrossRefGoogle Scholar
  5. Chan, K. S. and Tong, H.: A note on embedding a discrete parameter ARMA model in a continuous parameter ARMA model, J. Time Series Anal. 8(3) (1987), 277-281.MATHMathSciNetGoogle Scholar
  6. Comte, F.: Discrete and continuous time cointegration, J. Econometrics 88 (1999), 207-226.MATHMathSciNetCrossRefGoogle Scholar
  7. Corradi, V.: Comovement between diffusion processes, Economet. Theor. 13 (1997), 646-666.MathSciNetCrossRefGoogle Scholar
  8. Culver, W. J.: On the existence and uniqueness of the real logarithm of a matrix, Proc. American Math. Soc. 17(5) (1966), 1146-1151.MATHMathSciNetCrossRefGoogle Scholar
  9. Gantmacher, F. R.: The Theory of Matrices, Chelsea, New York, 1959.MATHGoogle Scholar
  10. Hansen, E. and Rahbek, A.: Stationarity and asymptotics of multivariate ARCH processes, with an application to robustness of cointegration analysis, Preprint, Department of Statistics and Operations Research, University of Copenhagen (1998).Google Scholar
  11. Hansen, L. P. and Sargent, T. J.: The dimensionality of the aliasing problem in models with rational spectral densities, Econometrica 51 (1983), 377-388.MATHMathSciNetCrossRefGoogle Scholar
  12. Harvey, A. C. and Stock, J.: Continuous time autoregressive models with common stochastic trends, J. Econ. Dyn. Control 12 (1988), 365-384.MATHMathSciNetCrossRefGoogle Scholar
  13. Jacobsen, M.: Homogenous gaussian diffusions in finite dimensions, Preprint, Department of Statistics and Operations Research, University of Copenhagen (1991).Google Scholar
  14. Jarrow, R. A. and Oldfield, G. A.: Forward contracts and futures contracts, J. Financ. Econ. 9(4) (1981), 373-382.CrossRefGoogle Scholar
  15. Johansen, S.: Likelihood-Based Inference in Cointegrated Vector Autoregressive Models, 2nd edition, Oxford University Press, Oxford, UK, 1996.Google Scholar
  16. Johansen, S.: The asymptotic variance of the estimated roots in a cointegrated vector autoregressive model, J. Time Series Anal. (in press).Google Scholar
  17. Kessler, M. and Rahbek, A.: Asymptotic likelihood based inference for cointegrated homogenous diffusions, Scand. J. Stat. 28 (2001), 455-470.MATHMathSciNetCrossRefGoogle Scholar
  18. MacKinlay, A. C. and Ramaswamy, K.: Index-futures arbitrage and the behavior of stock index futures prices, Rev. Financ. Studies 1(2) (1988), 137-158.CrossRefGoogle Scholar
  19. Merton, R. C.: Continuous-Time Finance, Blackwell, Oxford, UK, 1990.Google Scholar
  20. Musiela, M. and Rutkowski, M.: Martingale Methods in Financial Modelling, Applications of Mathematics, Stochastic Modelling and Applied Probability, Springer, Berlin, 1997.Google Scholar
  21. Nielsen, B. and Rahbek, A.: Similarity issues in cointegration analysis, Oxford Bull. Econ. Stat. 62(1) (2000), 5-22.CrossRefGoogle Scholar
  22. Phillips, P. C. B.: The problem of identification in finite parameter continuous time models, J. Econometrics 1(4) (1973), 351-362.MATHCrossRefGoogle Scholar
  23. Phillips, P. C. B.: Error correction and long-run equilibrium in continuous time, Econometrica 59(4) (1991), 967-980.MATHMathSciNetCrossRefGoogle Scholar
  24. Sequeira, J. M. and McAleer, M.: Testing the risk premium and cost-of-carry hypotheses for currency futures contracts, Appl. Financ. Econ. 10 (2000), 277-289.CrossRefGoogle Scholar
  25. Wymer, C. R.: Econometric estimation of stochastic differential equation systems, Econometrica 40 (1972), 565-577.MATHCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • M. Kessler
    • 1
  • A. Rahbek
    • 2
  1. 1.Department of StatisticsTechnical University of CartagenaSpain
  2. 2.Department of Applied Mathematics and StatisticsUniversity of CopenhagenCopenhagen ØDenmark

Personalised recommendations