Siberian Mathematical Journal

, Volume 45, Issue 3, pp 420–432 | Cite as

On Recognition of the Finite Simple Orthogonal Groups of Dimension 2m, 2m+1, and 2m+2 over a Field of Characteristic 2

  • A. V. Vasil'ev
  • M. A. Grechkoseeva
Article

Abstract

The spectrum ω(G) of a finite group G is the set of element orders of G. A finite group G is said to be recognizable by spectrum (briefly, recognizable) if HG for every finite group H such that ω(H)=ω(G). We give two series, infinite by dimension, of finite simple classical groups recognizable by spectrum.

recognition by spectrum finite orthogonal group 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mazurov V. D., “On the set of element orders in a finite group,” Algebra i Logika, 33,No. 1, 81-89 (1994).Google Scholar
  2. 2.
    Shi W., “A characteristic property of PSL 2(7),” J. Austral. Math. Soc. Ser. A., 36,No. 3, 354-356 (1984).Google Scholar
  3. 3.
    Shi W., “A characteristic property of A 5,” J. Southwest-China Teachers Univ., 3, 11-14 (1986).Google Scholar
  4. 4.
    Shi W., “A characteristic property of J 1 and PSL 2(2n),” Adv. Math., 16, 397-401 (1987).Google Scholar
  5. 5.
    Brandl R. and Shi W., “The characterization of PSL(2, q) by its element orders,” J. Algebra, 163,No. 1, 109-114 (1994).Google Scholar
  6. 6.
    Mazurov V. D., “Recognition of the finite simple groups S 4(q) by their element orders,” Algebra i Logika, 41,No. 2, 166-198 (2002).Google Scholar
  7. 7.
    Shi W. and Tang C. J., “A characterization of some orthogonal groups,” Prog. Nat. Sci., 7,No. 2, 155-162 (1997).Google Scholar
  8. 8.
    Mazurov V. D., Xu M. C., and Cao H. P., “Recognition of the finite simple groups L 3(2m) and U 3(2m) by their element orders,” Algebra i Logika, 39,No. 5, 567-585 (2000).Google Scholar
  9. 9.
    Mazurov V. D., “On recognition of finite groups by the set of element orders,” Algebra i Logika, 37,No. 6, 651-666 (1998).Google Scholar
  10. 10.
    Conway J. H., Curtis R. T., Norton S. P., Parker R. A., and Wilson R. A., Atlas of Finite Groups, Clarendon Press, Oxford (1985).Google Scholar
  11. 11.
    Alekseeva O. A. and Kondrat'ev A. S., “On recognition of the group E 8(q) by the set of element orders,” Ukrain. Mat. Zh., 54,No. 7, 998-1003 (2002).Google Scholar
  12. 12.
    Williams J. S., “Prime graph components of finite groups,” J. Algebra, 69,No. 2, 487-513 (1981).Google Scholar
  13. 13.
    Kondrat'ev A. S. and Mazurov V. D., “Recognition of alternating groups of prime degree from their element orders,” Sibirsk. Mat. Zh., 41,No. 2, 359-369 (2000).Google Scholar
  14. 14.
    Mazurov V. D., “Characterization of finite groups by sets of element orders,” Algebra i Logika, 36,No. 1, 37-53 (1997).Google Scholar
  15. 15.
    Zsigmondy K., “Zur Theorie der Potenzreste,” Monatsh. Math. Phys., 3, 265-284 (1892).Google Scholar
  16. 16.
    Seminar on Algebraic Groups and Related Finite Groups, Springer-Verlag, Berlin; Heidelberg; New York (1970).Google Scholar
  17. 17.
    Carter R. W., Simple Groups of Lie Type, John Wiley & Sons, London (1972).Google Scholar
  18. 18.
    Zavarnitsin A. V., Element Orders in Coverings of the Groups L n(q) and Recognition of the Alternating Group A 16 [in Russian] [Preprint, No. 48], NII Diskret. Mat. Inform., Novosibirsk (2000).Google Scholar
  19. 19.
    Grechkoseeva M. A., “On minimal permutation representations of classical simple groups,” Sibirsk. Mat. Zh., 44,No. 3, 560-586 (2003).Google Scholar
  20. 20.
    Aleeva M. R., “On finite simple groups with the set of element orders as that of the Frobenius or double Frobenius group,” Mat. Zametki, 73,No. 3, 323-339 (2003).Google Scholar
  21. 21.
    Aschbacher M. and Seitz G. M., “Involutions in Chevalley groups over fields of even order,” Nagoya Math. J., 63, 1-91 (1976).Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • A. V. Vasil'ev
  • M. A. Grechkoseeva

There are no affiliations available

Personalised recommendations