Advertisement

Siberian Mathematical Journal

, Volume 45, Issue 2, pp 388–397 | Cite as

Invariant Integrals for the Equilibrium Problem for a Plate with a Crack

  • E. M. Rudoy
Article

Abstract

We consider the equilibrium problem for a plate with a crack. The equilibrium of a plate is described by the biharmonic equation. Stress free boundary conditions are given on the crack faces. We introduce a perturbation of the domain in order to obtain an invariant Cherepanov–Rice-type integral which gives the energy release rate upon the quasistatic growth of a crack. We obtain a formula for the derivative of the energy functional with respect to the perturbation parameter which is useful in forecasting the development of a crack (for example, in study of local stability of a crack). The derivative of the energy functional is representable as an invariant integral along a sufficiently smooth closed contour. We construct some invariant integrals for the particular perturbations of a domain: translation of the whole cut and local translation along the cut.

biharmonic equation crack nonsmooth domain derivative of the energy functional invariant integral 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Morozov N. F., Mathematical Questions of the Theory of Cracks [in Russian], Nauka, Moscow (1984).Google Scholar
  2. 2.
    Nazarov S. A. and Polyakova O. R., “Weight functions and invariant integrals of higher order,” Izv. Ross. Akad. Nauk MTT, No. 1, 104-119 (1995).Google Scholar
  3. 3.
    Grisvard P., Singularities in Boundary Value Problems, Masson; Springer-Verlag, Paris; Berlin (1992).Google Scholar
  4. 4.
    Maz'ya V. G. and Nazarov S. A., “The asymptotics of energy integrals under small perturbations near angle and conic points,” Trudy Moskov. Mat. Obchsh., 79-129 (1987).Google Scholar
  5. 5.
    Khludnev A. M. and Sokolowski J., “The Griffith formula and the Rice-Cherepanov integral for crack problems with unilateral conditions in nonsmooth domains,” European J. Appl. Math., 10,No. 4, 379-394 (1999).Google Scholar
  6. 6.
    Kovtunenko V. A., “The invariant energy integral for a nonlinear crack problem with a possible contact of crack faces,” Prikl. Mat. i Mekh., 67,No. 1, 109-123 (2003).Google Scholar
  7. 7.
    Sokolowski J. and Khludnev A. M., “On derivation of the energy functionals in the theory of cracks with a possible contact of crack faces,” Dokl. Akad. Nauk, 374,No. 6, 776-779 (2000).Google Scholar
  8. 8.
    Rudoy E. M., “The Griffith formula for a plate with a crack,” Sibirsk. Zh. Industr. Mat., 5,No. 3, 155-161 (2002).Google Scholar
  9. 9.
    Rudoy E. M., “Asymptotics of the energy integral for perturbation of a boundary,” Dinamika Sploshn. Sredy, No. 116, 97-103 (2000).Google Scholar
  10. 10.
    Khludnev A. M. and Kovtunenko V. A., Analysis of Cracks in Solids, WIT Press, Southampton; Boston (2000). (Adv. in Fracture Mech.; 6)Google Scholar
  11. 11.
    Fichera G., Existence Theorems in Elasticity [Russian translation], Mir, Moscow (1974).Google Scholar
  12. 12.
    Browder F. E., “On the regularity properties of solutions of elliptic differential equations,” Comm. Pure Appl. Math., 9,No. 3, 351-361 (1956).Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • E. M. Rudoy

There are no affiliations available

Personalised recommendations