Siberian Mathematical Journal

, Volume 45, Issue 1, pp 86–99 | Cite as

On One Class of Matrix Differential Operators

  • G. V. Demidenko


We consider one class of matrix differential operators in the whole space. For this class of operators we establish the isomorphic properties in some special scales of weighted Sobolev spaces and study the regularity properties for solutions to the system of differential equations defined by these operators. The class of operators under consideration contains the stationary Navier–Stokes operator.

matrix differential operator weighted Sobolev space isomorphism solution regularity Navier–Stokes operator 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Demidenko G. V., “On quasielliptic operators in ℝn,” Sibirsk. Mat. Zh., 39,No. 5, 1028-1037 (1998).Google Scholar
  2. 2.
    Demidenko G. V., “Isomorphic properties of quasielliptic operators,” Dokl. Akad. Nauk, 364,No. 6, 730-734 (1999).Google Scholar
  3. 3.
    Demidenko G. V., “Isomorphic properties of one class of differential operators and their applications,” Sibirsk. Mat. Zh., 42,No. 5, 1036-1056 (2001).Google Scholar
  4. 4.
    Volevich L. R., “Local properties of solutions to quasielliptic systems,” Mat. Sb., 59,No. 3, 3-50 (1962).Google Scholar
  5. 5.
    Demidenko G. V., “On weighted Sobolev spaces and integral operators determined by quasielliptic equations,” Dokl. Akad. Nauk, 334,No. 4, 420-423 (1994).Google Scholar
  6. 6.
    Kudryavtsev L. D., “Embedding theorems for functions defined on the whole space or half-space,” I: Mat. Sb., 69,No. 4, 616-639 (1966); II: Mat. Sb., 70, No. 1, 3-35 (1966).Google Scholar
  7. 7.
    Kudryavtsev L. D. and Nikol'skii S. M., “Spaces of differentiable functions in several variables and embedding theorems,” in: Contemporary Problems of Mathematics. Fundamental Trends [in Russian], VINITI, Moscow, 1988, 26, pp. 5-157 (Itogi Nauki i Tekhniki).Google Scholar
  8. 8.
    Nirenberg L. and Walker H. F., “The null spaces of elliptic partial differential operators in ℝn,” J. Math. Anal. Appl., 42,No. 2, 271-301 (1973).Google Scholar
  9. 9.
    Cantor M., “Elliptic operators and the decomposition of tensor fields,” Bull. Amer. Math. Soc., 5,No. 3, 235-262 (1981).Google Scholar
  10. 10.
    McOwen R. C., “The behavior of the Laplacian on weighted Sobolev spaces,” Comm. Pure Appl. Math., 32,No. 6, 783-795 (1979).Google Scholar
  11. 11.
    Choquet-Bruhat Y. and Christodoulou D., “Elliptic systems in H s,σ spaces on manifolds which are Euclidean at infinity,” Acta Math., 146,No. 1/2, 129-150 (1981).Google Scholar
  12. 12.
    Lockhart R. B. and McOwen R. C., “Elliptic differential operators on noncompact manifolds,” Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 12,No. 3, 409-447 (1985).Google Scholar
  13. 13.
    Amrouche C., Girault V., and Giroire J., “Espaces de Sobolev avec poids et equation de Laplace dans R n. I,” C. R. Acad. Sci. Paris Ser. I, 315, 269-274 (1992).Google Scholar
  14. 14.
    Hile G. N. and Mawata C. P., “The behavior of the heat operator on weighted Sobolev spaces,” Trans. Amer. Math. Soc., 350,No. 4, 1407-1428 (1998).Google Scholar
  15. 15.
    Demidenko G. V., “On properties of a class of matrix differential operators in ℝn,” Selcuk J. Appl. Math., 3,No. 2, 23-36 (2002).Google Scholar
  16. 16.
    Demidenko G. V. and Uspenskii S. V., Equations and Systems That Are Not Solved with Respect to the Higher Derivative [in Russian], Nauchnaya Kniga, Novosibirsk (1998).Google Scholar
  17. 17.
    Uspenskii S. V., “On representation of functions determined by a certain class of hypoelliptic operators,” Trudy Mat. Inst. Akad. Nauk SSSR, 117, 292-299 (1972).Google Scholar
  18. 18.
    Lizorkin P. I., “Generalized Liouville differentiation and the multiplier method in the theory of embeddings of classes of differentiable functions,” Trudy Mat. Inst. Steklov, 105, 89-167 (1969).Google Scholar
  19. 19.
    Hardy G. H., Littlewood D. E., and Pólya G. P., Inequalities [Russian translation], Izdat. Inostr. Lit., Moscow (1948).Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • G. V. Demidenko
    • 1
  1. 1.Sobolev Institute of MathematicsNovosibirsk

Personalised recommendations