Advertisement

Studia Geophysica et Geodaetica

, Volume 48, Issue 4, pp 767–776 | Cite as

The Use of Field Dependence of Magnetic Susceptibility for Monitoring Variations in Titanomagnetite Composition - A Case Study on Basanites from the Vogelsberg 1996 Drillhole, Germany

  • H. de Wall
  • L. Nano
Article

Abstract

In high Ti basanites from the Vogelsberg 1996 drillhole distinct variations in the field dependence of AC magnetic susceptibility correlate with compositional variations of titanomagnetite, as determined by temperature dependence of magnetic susceptibility. Curie temperatures for the basanites are in the range of 240 to 525°C. The field dependence reaches up to 20% for measurements in 30 A/m and 300 A/m AC field amplitude. It is demonstrated that two-field magnetic susceptibility measurements can prevail information about compositional changes of titanomagnetite and therefore support the interpretation of magnetic susceptibility logs from drillcores of basaltic rock suites.

magnetic susceptibility logging field amplitude Vogels berg volcanic complex 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akimoto S., 1962. Magnetic properties of FeO-Fe2O3-TiO2 system as a basis of rock magnetism. J. Phys. Soc. Japan, 17 (Suppl. B1), 706-710.Google Scholar
  2. Bogaard P.J.F. and Wörner G., 2003. Petrogenesis of basanitic to tholeiitic volcanic rocks from the Miocene Vogelsberg, central Germany. J. Petrol., 44, 569-601.Google Scholar
  3. Bücker C.J., Cashman K.V. and Planke S., 1999. Physical and magnetic characterization of aa and pahoehoe lava flows: Hole 990A. Proc. Ocean Drilling Program, 163, 41-49.Google Scholar
  4. de Wall H., 2000. The field dependence of AC-susceptibility in titanomagnetites: implications for the anisotropy of magnetic susceptibility. Geophys. Res. Lett., 27, 2413-2416.Google Scholar
  5. de Wall H., Kontny A. and Vahle C., 2004. Magnetic susceptibility zonation of the melilititic Riedheim dyke (Hegau volcanic field, Germany): evidence for multiple magma pulses? J. Volcanol. Geotherm. Res., 131, 143-163.Google Scholar
  6. Gromme C.S., Wright T.L. and Peck D.L., 1969. Magnetic properties and oxidation of iron titanium oxide minerals in Alae and Makaopuhi lava lakes, Hawaii. J. Geophys. Res., 74, 5277-5293.Google Scholar
  7. Hoppe A. and Schulz R. (Eds.), 2001. GeDie Forschungsbohrung Vogelsberg 1996-Einblicke in einen miozänen Vulkankomplex. Geol. Abh. Hessen, 107, 49-67.Google Scholar
  8. Hrouda F., 1994. A technique for the measurement of thermal changes of magnetic susceptibility of weakly magnetic rocks by the CS-2 apparatus and KLY-2 Kappabridge. Geophys. J. Int., 118, 604-612.Google Scholar
  9. Hrouda F., 2002. Low-field variation of magnetic susceptibility and its effect on the anisotropy of magnetic susceptibility of rocks. Geophys. J. Int., 150, 715-723.Google Scholar
  10. Hrouda F., 2003. Indices for numerical characterization of the alteration processes of magnetic minerals taking place during investigation of temperature variation of magnetic susceptibility. Stud. Geophys. Geod., 47, 847-861.Google Scholar
  11. Hrouda F., Chlupáčová M. and Novák J.K., 2002. Variations in magnetic anisotropy and opaque mineralogy along a kilometer deep profile within a vertical dyke of the syenogranite porphyry at Cinovec (Czech Republic). J. Volcanol. Geotherm. Res., 113, 37-47.Google Scholar
  12. Jackson M., Moskowitz B., Rosenbaum J. and Kissel C., 1998. Field-dependence of AC susceptibility in titanomagnetites. Earth Planet. Sci. Lett., 157, 129-139.Google Scholar
  13. Jung S. and Masberg P., 1998. Major-and trace-element systematics and isotope geochemistry of Cenozoic mafic volcanic rocks from the Vogelsberg (central Germany); constraints on the origin of continental alkaline and tholeiitic basalts and their mantle sources. J. Volcanol. Geotherm. Res., 86, 151-177.Google Scholar
  14. Kontny A. and de Wall H., 2000. The use of low and high k(T)-curves for the characterization of magneto-mineralogical changes during metamorphism. Phys. Chem. Earth A, 25, 421-429.Google Scholar
  15. Kontny A., Vahle C. and de Wall H., 2003. Characteristic magnetic behaviour of subaerial and submarine lava units from the Hawaiian Scientific Drilling Project (HSDP-2). Geochemistry, Geophysics, Geosystems, 3, doi: 10.1029/2002GC000304.Google Scholar
  16. Kött A., Nesbor H.-D. and Ehrenberg K.-H., 2001. GeSchichtenverzeichnis der Forschungsbohrung Vogelsberg 1996. Geol. Abh. Hessen, 107, 15-47.Google Scholar
  17. Pariso J.E. and Johnson H.P., 1991. Alteration processes at Deep Sea Drilling Project/Ocean Drilling Program Hole 504B at the Costa Rica Rift: implications for magnetisation of oceanic crust. J. Geophys. Res., 96, 11703-11722.Google Scholar
  18. Schnepp E., Rolf C. and Struck J., 2001. GePaläo-und gesteinsmagnetische Untersuchungen an Kernen der Forschungsbohrung Vogelsberg 1996. Geol. Abh. Hessen, 107, 111-142.Google Scholar
  19. Tarling D.H. and Hrouda F., 1993. The Magnetic Anisotropy of Rocks, Chapman and Hall, London, U.K., 217 pp.Google Scholar
  20. Worm H.-U., Clark D. and Dekkers M., 1993. Magnetic susceptibility of pyrrhotite: grain size, field and frequency dependence. Geophys. J. Int., 114, 127-137.Google Scholar

Copyright information

© StudiaGeo s.r.o. 2004

Authors and Affiliations

  • H. de Wall
    • 1
  • L. Nano
    • 1
  1. 1.Institut für GeologieJulius-Maximilians-Universität WürzburgWürzburgGermany

Personalised recommendations