Russian Journal of Ecology

, Volume 35, Issue 3, pp 150–155 | Cite as

Aggregated Estimation of Basic Parameters of Biological Production and Carbon Budget of Russian Terrestrial Ecosystems: 3. Biogeochemical Carbon Fluxes

  • V. S. Stolbovoi
  • S. Nilsson
  • A. Z. Shvidenko
  • I. McCallum


The biogeochemical cycle of organic carbon in Russian terrestrial ecosystems in 1990 is considered. Its components have been estimated as follows: net primary production, 4354 million metric tons of carbon (Mt C); annual amount of plant detritus, 3223 Mt C; heterotrophic soil respiration, 3214 Mt C; biomass utilization, 680 Mt C; damage to vegetation caused by fire and pests, 140 Mt C; and removal by surface and ground waters, 79 Mt C. Anthropogenically regulated fluxes of organic carbon (820 Mt C) are comparable to its amount involved in the natural cycle.

biogeochemistry of terrestrial ecosystems balance of biogeochemical carbon fluxes greenhouse gases 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Batjes, N.H., Total Carbon and Nitrogen in the Soils of the World, Eur. J. Soil Sci., 1996, vol. 47, pp. 151-163.Google Scholar
  2. Bazilevich, N.I., Metody izucheniya biologicheskogo krugovorota v razlichnykh prirodnykh zonakh (Methods for Studying Biological Cycles in Different Natural Zones), Moscow: Mysl', 1978.Google Scholar
  3. Bazilevich, N.I., Biologicheskaya produktivnost' ekosistem Severnoi Evrazii (Biological Productivity of Ecosystems in Northern Eurasia), Moscow: Nauka, 1993.Google Scholar
  4. Bazilevich, N.I., Grebenshchikov, O.S., and Tishkov, A.A., Geograficheskie zakonomernosti struktury i funktsionirovaniya ekosistem (Geographic Trends in the Structure and Functioning of Ecosystems), Moscow: Nauka, 1986.Google Scholar
  5. Belousova, N.I., Lysimetric Studies in the Taiga Zone: Genetical Interpretations, Colloques internationaux du C.N.R.S. Migrations organo-minerales dans les sols temperes, 1983, No. 303.Google Scholar
  6. Bolin, B., Degens, E.T., Kempe, S., and Ketner, P., The Global Carbon Cycle (SCOPE 13), Wiley, 1979.Google Scholar
  7. Burrough, P.A., Principles of Geographical Information Systems for Land Resources Assessments, New York: Clarendon-Oxford University Press, 1986.Google Scholar
  8. D'yakonova, K.V., Organic and Mineral Substances in Lysimetric Solutions from Different Soils and Their Role in Recent Processes of Soil Formation, in Organicheskoe veshchestvo estestvennykh i ispol'zuemykh pochv (Organic Matter of Natural and Cultivated Soils), Moscow: Nauka, 1972, pp. 198-223.Google Scholar
  9. Fedorov-Davydov, D.G. and Gilichinskii, D.A., Peculiarities of the Dynamics of CO2 Emission from Permafrost Soils, in Dykhanie pochvy (Soil Respiration), Pushchino: Nauchn. Tsentr Biol. Issled. Ross. Akad. Nauk, 1993, pp. 76-101.Google Scholar
  10. Fung, I., John, J., Lerner, J., et al., Three-Dimensional Model of Synthesis of the Global Methane Cycle, J. Geophys. Res., 1991, vol. 96,no. 7, pp. 13033-13065.Google Scholar
  11. Glazovskaya, M.A., The Role and Functioning of the Pedosphere in the Geochemical Carbon Cycle, Pochvovedenie, 1996, No. 2, pp. 174-186.Google Scholar
  12. Grishina, L.A., Gumusoobrazovanie i gumusnoe sostoyanie pochv (Humus Formation and Humus Status of Soils), Moscow: Mosk. Gos. Univ., 1986.Google Scholar
  13. Hulme, M., Estimating Global Changes in Precipitation, Weather, 1995, vol. 50,no. 2.Google Scholar
  14. IPCC: Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual, 1997, vol. 3 ( Scholar
  15. Karta kategorii zemel' SSSR. Masshtab 1: 4 milliona (Map of Land Quality Classes in the Soviet Union, Scale 1: 4000000), Yanvareva, L.F., Ed., Moscow: Gos. Upr. Geod. Kartogr., 1989.Google Scholar
  16. Kharuk, V.I., Shiyatov, S.G., Naurzbaev, M.M., and Fedotova, E.V., Response of Forest-Tundra Ecotone in Siberia to Climate Change, Proc. Ninth IBFRA Conference, Oslo, September 21–23, 1998, Oslo: North Institute for Skogforskning, 1999, pp. 19-23.Google Scholar
  17. Kobak, K.I., Bioticheskie komponenty uglerodnogo tsikla (Biotic Components of the Carbon Cycle), Leningrad: Gidrometeoizdat, 1988.Google Scholar
  18. Kramer, J.R., Old Sediment Carbon in Global Budgets, in Soil Responses to Climate Change. NATO ASI Series, Series I: Global Environment Change, vol. 23, Rounsevell M.D.A. and Loveland, P.J., Eds., Berlin: Springer, 1994, pp. 169-186.Google Scholar
  19. Kudeyarov, V.N., Khakimov, F.I., Deeva, N.F., et al., An Estimate of Soil Respiration in Russia, Pochvovedenie, 1995, No. 1, pp. 33-42.Google Scholar
  20. Lucht, W., Prentice, I.C., Myneni, R.B., et al., Climatic Control of the High-Latitude Vegetation Greening Trend and Pinatubo Effect, Science, 2002, vol. 296, pp. 1687-1689.Google Scholar
  21. Magure, D.J., Goodchild, M.F., and Phind, D.W., Geographical Information Systems, vol. 1: Principles; vol. 2: Applications, New York: Wiley, 1992.Google Scholar
  22. Makarov, B.N., Gazovyi rezhim pochv (Gas Regime of Soils), Moscow: Agropromizdat, 1988.Google Scholar
  23. Mokronosov, F.T., Global Photosynthesis and Vegetation Biodiversity, in Krugovorot ugleroda na territorii Rossii (Carbon Cycle in the Territory of Russia), Zavarzin, G.A., Ed., Moscow: Ross. Akad. Nauk, 1999, pp. 19-62.Google Scholar
  24. Myneni, R.B., Dong, J., Tucker, C.J., et al., A Large Carbon Sink in the Woody Biomass of Northern Forests, 2001, ( Scholar
  25. Nilsson, S., Shvidenko, A., Stolbovoi, V., et al., Full Carbon Account for Russia, Interim Report, IR-00-021, Laxenburg: IIASA, 2000.Google Scholar
  26. Orlov, D.S., Gumusovye kisloty i obshchaya teoriya gumifikatsii (Humus Acids and the General Theory of Humification), Moscow: Mosk. Gos. Univ., 1990.Google Scholar
  27. Ponomareva, V.V. and Plotnikova, N.S., Trends in Element Migration and Accumulation in Podzolic Soils: Lysimetric Studies, in Biogeokhimicheskie protsessy v podzolistykh pochvakh (Biogeochemical Processes in Podzolic Soils), Leningrad: Nauka, 1972, pp. 6-65.Google Scholar
  28. Rastitel'nost' SSSR. Karta masshtaba 1: 4 milliona (Vegetation Map of the Soviet Union, Scale 1: 4000000), Isachenko, T.I., Ed., Moscow: Gos. Upr. Geod. Kartogr., 1990.Google Scholar
  29. Romankevich, E.A. and Vetrov, A.A., Uglerodnyi tsikl v Arkticheskikh moryakh Rossii (Carbon Cycle in Arctic Seas of Russia), Moscow: Nauka, 1997.Google Scholar
  30. Sel'skoe khozyaistvo Rossii. Statisticheskii sbornik (Agriculture in Russia: Statistical Data), Moscow: Goskomstat RF, 1995.Google Scholar
  31. Shvidenko, A.Z. and Nilsson, S., A Synthesis of the Impact of Russian Forests on the Global Carbon Budget for 1961–1998, Tellus, 2003, vol. 55, pp. 391-415.Google Scholar
  32. Shvidenko, A.Z., Nilsson, S., Stolbovoi, V.S., Gluck, M., Shchepashchenko, D.G., and Rozhkov, V.A., Aggregated Estimation of the Basic Parameters of Biological Production and Carbon Budget of Russian Terrestrial Ecosystems: 1. Stocks of Plant Organic Mass, Ekologiya, 2000, No. 6, pp. 403-410.Google Scholar
  33. Shvidenko, A.Z., Nil'son, S., Stolbovoi, V.S., et al., Aggregated Estimation of the Basic Parameters of Biological Production and Carbon Budget of Russian Terrestrial Ecosystems. 2. Net Primary Production, Ekologiya, 2001, No. 2, pp. 73-90.Google Scholar
  34. Stolbovoi, V., Carbon Pools in Tundra Soils of Russia: Improving Data Reliability, in Advances in Soil Science, Lewis Publishers, USA, 1998, pp. 39-58.Google Scholar
  35. Stolbovoi, V., Carbon in Russian Soils, Clim. Change, 2002, vol. 55,no. 1–2, pp. 131-156.Google Scholar
  36. Stolbovoi, V., Soil Respiration and Its Role in Russia's Terrestrial C Flux Balance for the Kyoto Baseline Year, Tellus, 2003, vol. 55, pp. 258-269.Google Scholar
  37. Stolbovoi, V. and McCallum, I., CD-ROM Land Resources of Russia, Laxenburg, Austria: IIASA; Russian Academy of Sci-ences, 2002 ( Scholar
  38. Stolbovoi, V.S. and Sheremet, B.V., Soil Resources of Russia, Pochvovedenie, 1997, No. 12, pp. 1429-1437.Google Scholar
  39. Stolbovoi, V., Nilsson, S., and Shvidenko, A., Effect of Climate Warming on Carbon Balance of Cold Ecosystems of Russia, Proc. Third Int. Conf. Cryopedology, Copenhagen, Denmark, 2001.Google Scholar
  40. Thurman, E.M., Humic Substances in Groundwater, in Humic Substances in Soil, Sediment and Water: Geochemistry, Isolation and Characterization, Alken, G.R., Mcknight, D.M., Wershaw, R.L., and Maccarthy, P., Eds., New York: Wiley, 1985, pp. 87-104.Google Scholar
  41. UNFCCC: Report of the Conference of the Parties on Its Third Session, Kyoto, December 1–11, 1997: Addendum, Document FCCC/CP/1997/7/Add1, 1998 ( Scholar
  42. Vernadsky, V.I., Khimicheskoe stroenie biosfery Zemli i ee okruzheniya (Chemical Composition of the Earth's Biosphere and Its Surroundings), Moscow: Nauka, 1965.Google Scholar
  43. Vinogradov, M.E., Romankevich, E.A., Vetrov, A.A., and Vedernikov, V.I., Carbon Cycles in the Arctic, in Krugovorot ugleroda na territorii Rossii (Carbon Cycle in the Territory of Russia), Moscow: Ross. Akad. Nauk, 1998, pp. 300-325.Google Scholar
  44. Zamolodchikov, D.G. and Karelin, D.V., Biogenic Carbon Cycles in the Russian Tundra, in Krugovorot ugleroda na territorii Rossii (Carbon Cycle in the Territory of Russia), Moscow: Ross. Akad. Nauk, 1998, pp. 146-165.Google Scholar
  45. Zelenev, V.V., Assessment of the Average Annual Methane Flux from Soils of Russia. WP-96-51, Laxenburg: IIASA, 1996.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2004

Authors and Affiliations

  • V. S. Stolbovoi
    • 1
  • S. Nilsson
    • 1
  • A. Z. Shvidenko
    • 1
  • I. McCallum
    • 1
  1. 1.International Institute for Applied Systems AnalysisLaxenburgAustria

Personalised recommendations