Russian Journal of Plant Physiology

, Volume 51, Issue 4, pp 559–562 | Cite as

The Stimulatory Effect of the Antibiotic Cefotaxime on Plant Regeneration in Maize Tissue Culture

  • S. A. Danilova
  • Yu. I. Dolgikh


In order to elucidate the effects of the antibiotic cefotaxime on callus growth and morphogenesis, we incubated embryogenic maize calli (Zea mays L.) of A188 and R91 lines and of their F1 hybrid with 50–500 mg/l cefotaxime throughout several subcultures. Cefotaxime did not affect the induction frequency and growth of the embryogenic callus but enhanced its morphogenesis. In both tested lines and a hybrid, the highest increase in the number of regenerated plants was observed at the antibiotic concentration of 150 mg/l. The degree of morphogenesis stimulation and the range of cefotaxime concentrations effective in stimulation of plant regeneration depended on the properties of calli obtained from tested genotypes.

Zea mays cefotaxime embryogenic callus regeneration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Duncan, D.R., Williams, M.T., Zehr, B.T., and Widholm, J.M., The Production of Callus Capable of Plant Regeneration from Immature Embryos of Numerous Zea maysGenotypes, Planta, 1985, vol. 165, pp. 322–332.Google Scholar
  2. 2.
    Koppel', L.A. and Butenko, R.G., Development of Tomato Apical Meristems under Illumination by Light of Different Quality, Fiziol. Rast. (Moscow), 1992, vol. 39, pp. 378–392 (Sov. Plant Physiol., Engl. Transl.).Google Scholar
  3. 3.
    Kitlaev, G.B., Dolgikh, Yu.I., and Butenko, R.G., Physiological Effect of Electric Current on Maize Cell Culture, Dokl. Akad. Nauk, 1994, vol. 335, pp. 393–395.Google Scholar
  4. 4.
    Pavlova, Z.N., Ash, O.A., Vnuchkova, V.A., Babakov, A.V., Torgov, V.I., Nechaev, O.A., Usov, A.I., and Shibaev, V.N., Biological Activity of a Synthetic Pentasaccharide Fragment of Xyloglucan, Plant Sci., 1992, vol. 85, pp. 131–134.Google Scholar
  5. 5.
    Dolgikh, Yu.I., Shaikina, E.Yu., Usov, A.I., Shibaev, V.N., and Kuznetsov, Vl.V., A Trisaccharide Fragment of Xyloglucan as the Regulator of Plant Morphogenesis, Dokl. Akad. Nauk, 1998, vol. 360, pp. 417–419.Google Scholar
  6. 6.
    Dias, S. and Dolgikh, Yu.I., The Role of Physiological Factors in the Increase of Plant Regeneration Efficiency in Maize Tissue Cultures, Biotekhnologiya, 1997, nos. 11–12, pp. 32–36.Google Scholar
  7. 7.
    Egorov, N.S., Osnovy ucheniya ob antibiotikakh (Basic Knowledge of Antibiotics), Moscow: Mosk. Gos. Univ.,1994.Google Scholar
  8. 8.
    Kuchuk, N.V., Genetic Transformation of Higher Plants Mediated by Bacteria from AgrobacteriumFamily, Usp. Sovrem. Biol., 1977, vol. 117, pp. 645–659.Google Scholar
  9. 9.
    Yepes, L.M. and Aldwinckle, H.S., Factors That Affect Leaf Regeneration Efficiency in Apple, and Effect of Antibiotics in Morphogenesis, Plant Cell, Tissue Organ Cult., 1994, vol. 37, pp. 257–269.Google Scholar
  10. 10.
    Agrawal, D.C., Banerjee, A.K., Kedari, P.H., Jacob, S., Hazra, S., and Krishnamurthy, K.V., Effect of Cefotaxime on the Growth of Excised Embryo-Axes of 6 Cultivars of Cotton ( Gossypium hirsutumL.), J. Plant Physiol, 1998, vol. 152, pp. 580–582.Google Scholar
  11. 11.
    Nauerby, B., Billing, K., and Wyndaele, R., Influence of the Antibiotic Timentin on Plant Regeneration Compared to Carbenicillin and Cefotaxime in Concentration Suitable for Elimination of Agrobacterium tumefaciens, Plant Sci., 1997, vol. 123, pp. 169–177.Google Scholar
  12. 12.
    Mathias, R.J. and Boyd, L.A., Cefotaxime Stimulates Callus Growth, Embryogenesis and Regeneration in Hexaploid Bread Wheat ( Triticum aestivumL. Em. Thell), Plant Sci., 1986, vol. 46, pp. 217–223.Google Scholar
  13. 13.
    Mathias, R.J. and Mukasa, C., The Effect of Cefotaxime on the Growth and Regeneration of Callus from Four Varieties of Barley ( Hordeum vulgareL.), Plant Cell Rep., 1987, vol. 6, pp. 454–457.Google Scholar
  14. 14.
    Borrelli, G.M., Difonzo, N., and Lupotto, E., Effect of Cefotaxime on Callus Culture and Plant Regeneration in Durum Wheat, J. Plant Physiol., 1992, vol. 140, pp. 372–374.Google Scholar
  15. 15.
    Rao, A.M., Sree, K.P., and Kishor, P.B.K., Enhanced Plant Regeneration in Grain and Sweet Sorghum by Asparagine, Proline and Cefotaxime, Plant Cell Rep.1995, vol. 15, pp. 72–75.Google Scholar
  16. 16.
    Dolgikh, Yu.I., Larina, S.N., and Shamina, Z.B., Selection In Vitrofor Maize Osmoresistance and Description of Regenerated Plants, Fiziol. Rast. (Moscow), 1994, vol. 41, pp. 33–37 (Russ. J. Plant Physiol., Engl. Transl.).Google Scholar
  17. 17.
    Murashige, T. and Skoog, F., A Revised Medium for Rapid Growth and Bioassays with Tobacco Tissue Cultures, Physiol. Plant., 1962, vol. 15, pp. 473–497.Google Scholar
  18. 18.
    Holford, P. and Newbury, H.J., The Effects of Antibiotics and Their Breakdown Products on the In VitroGrowth of Antirrhinum majus, Plant Cell Rep., 1992, vol. 11, pp. 93–96.Google Scholar
  19. 19.
    Orlikowska, T.K., Cranston, H.J., and Dyer, W.E., Factors Influencing Agrobacterium tumifaciens-Mediated Transformation and Regeneration of the Sunflower Cultivar Centennial, Plant Cell, Tissue Organ Cult., 1995, vol. 40, pp. 85–91.Google Scholar
  20. 20.
    Nesticky, M., Novak, F.J., Piovarci, A., and Dolezelova, M., Genetic Analysis of Callus Growth of Maize ( Zea maysL.)In Vitro, Z. Pflanzenzuch., 1983, vol. 91, pp. 322–328.Google Scholar
  21. 21.
    Danilova, S.A. and Dolgikh, Yu.I., Sposob obrabotki embriogennogo kallusa kukuruzy In Vitro(Method for Treatment of Maize Embryogenic Callus In Vitro), Russia Inventor's Certificate no. 2200760, Byull. Izobret., 2003, no. 8.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2004

Authors and Affiliations

  • S. A. Danilova
    • 1
  • Yu. I. Dolgikh
    • 2
  1. 1.Timiryazev Institute of Plant PhysiologyRussian Academy of SciencesMoscowRussia
  2. 2.Timiryazev Institute of Plant PhysiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations