Advertisement

Russian Journal of Plant Physiology

, Volume 51, Issue 3, pp 348–353 | Cite as

Chlorophyll Index and Photosynthetic Carbon Sequestration in Northern Eurasia Forests

  • P. Yu. Voronin
  • P. V. Konovalov
  • V. K. Bolondinskii
  • L. K. Kaipiainen
Article
  • 68 Downloads

Abstract

An infrared gas analyzer was operated in an open-circuit differential mode to measure CO2 gas exchange in intact leafy and leafless parts of skeletal branches of Pinus sylvestris L. throughout the summer daylight period. The photosynthetic carbon sequestration in major types of forest phytocenoses in northern Eurasia was assessed for middle-aged and moderately dense stands. The estimates were corrected for carbon losses associated with phloem transport of photosynthetic products per each meter of transport pathway (14 kg C/(kg chlorophyll m)), as well as for respiratory losses of heterotrophic phytomass. A high correlation (R2 = 0.82) was found between this component of production process in the current growth season and the chlorophyll index for major forest associations of northern Eurasia. It is concluded that the transport-related carbon losses of photosynthetic products in the phloem over the current growth period (1100 h) enlarge significantly as the mean stand height increases during the tree growth and upon the regional shift from north to south.

Pinus sylvestris annual productivity of photosynthesis phloem transport forest northern Eurasia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Voronin, P.Yu., Efimtsev, E.I., Vasil'ev, A.A., Vatkovskii, O.S., and Mokronosov, A.T., Projective Plane Chlorophyll Content and the Biological Diversity of Vegetation in the Main Geobotanic Zones of Russia, Fiziol. Rast. (Moscow), 1995, vol. 42, pp. 295-302 (Russ. J. Plant Physiol., Engl. Transl.).Google Scholar
  2. 2.
    Tsel'niker, Yu.L. and Malkina, I.S., Chlorophyll Index as an Indicator of the Annual Carbon Accumulation in Forest Stands, Fiziol. Rast. (Moscow), 1994, vol. 41, pp. 325-330 (Russ. J. Plant Physiol., Engl. Transl.).Google Scholar
  3. 3.
    Wintermans, J.F. and de Mots, A., Spectrophotometric Characteristics of Chlorophyll a and b and Their Pheophytin in Ethanol, Biochim. Biophys. Acta, 1965, vol. 109, pp. 448-453.Google Scholar
  4. 4.
    Isaev, A.S., Korovin, G.N., Sukhikh, V.I., Titov, S.P., Utkin, A.I., Golub, A.A., Zamolodchikov, D.G., and Pryazhnikov, A.A., Ekologicheskie problemy pogloshcheniya uglekislogo gaza posredstvom lesovosstanovleniya i lesorazvedeniya v Rossii (Ecological Problems of Carbon Dioxide Assimilation as Related to Reforestation and Afforestation), Moscow: Tsentr Ekol. Politiki, 1995.Google Scholar
  5. 5.
    Lesnaya entsiklopediya (Forest Encyclopedia), Vorob'ev, G.I., Ed., Moscow: Sovetskaya Entsyklopediya, 1985, vol. 1.Google Scholar
  6. 6.
    Kharin, O.A., Svalov, N.N., Ushakov, A.I., Anisochkin, V.G., and Teplyakov, V.K., Lesotaksatsionnyi spravochnik (Handbook for Forest Plant Identification), Moscow: Mosk. Lesotechnicheskii Inst., 1991.Google Scholar
  7. 7.
    Usol'tsev, V.A., Fitomassa lesov severnoi Evrazii: baza dannykh i geografiya (Phytomass of North Eurasia Forests: Database and Geography), Yekaterinburg: Ural. Otd. Ross. Akad. Nauk, 2001.Google Scholar
  8. 8.
    Usol'tsev, V.A., Fitomassa lesov severnoi Evrazii: normativy i elementy geografii (Phytomass of North Eurasia Forests: Standards and Elements of Geography), Yekaterinburg: Ural. Otd. Ross. Akad. Nauk, 2002.Google Scholar
  9. 9.
    Hari, P., Nilson, T., Salminen, R., Kaipiainen, L., Korplilahti, E., and Ross, J., Nonlinear Dependence of Photosynthetic Rate on Irradiance and Its Consequences for Estimation of the Amount of Saccharides Formed, Photosynthetica, 1984, vol. 18, pp. 28-33.Google Scholar
  10. 10.
    Kuppers, M., Wheeler, A.M., Kuppers, B.I.L., Kirschbaum, M.U.F., and Farquhar, G.D., Carbon Fixation in Eucalyptus in the Field: Analysis of the Diurnal Variations in Photosynthetic Capacity, Oecologia, 1986, vol. 70, pp. 273-282.Google Scholar
  11. 11.
    Kaipiainen, L.K., Sofronova, G.I., and Bolondinskii, V.K., Effect of Toxic Pollutants on the Respiration of Needles and Shoots of Pinus silvestris, Ekologiya (Yekaterinburg), 1998, vol. 29, pp. 23-27.Google Scholar
  12. 12.
    Tsel'niker, Yu.L., Malkina, I.S., Kovalev, A.G., Chmora, S.N., Mamaev, V.V., and Molchanov, A.G., Rost i gazoobmen CO 2 u lesnykh derev'ev (Growth and CO2 Exchange in Forest Woody Plants), Moscow: Nauka, 1993.Google Scholar
  13. 13.
    Voronin, P.Yu., Kaipiainen, L.K., Bolondinskii, V.K., Konovalov, P.V., Hein, Kh.Y., and Mokronosov, A.T., Involvement of Exported Photosynthetic Products in the CO2 Exchange of the Skeletal Shoots of Pine, Fiziol. Rast. (Moscow), 2001, vol. 48, pp. 172-176 (Russ. J. Plant Physiol., Engl. Transl.).Google Scholar
  14. 14.
    Fensom, D.S., Thompson, R.G., and Caldwell, C.D., Tandem Moving Pressure Wave Mechanism for Phloem Translocation, Fiziol. Rast. (Moscow), 1994, vol. 41, pp. 125-148 (Russ. J. Plant Physiol., Engl. Transl.).Google Scholar
  15. 15.
    Gamalei, Yu.V., Photosynthesis and Export of Photoassimilates: Development of the Transport System and Source-Sink Relations, Fiziol. Rast. (Moscow), 1998, vol. 45, pp. 614-631 (Russ. J. Plant Physiol., Engl. Transl.).Google Scholar
  16. 16.
    Kaipiainen, L.K., Equilibrium of Water Transport System in Pinus silvestris: 4. General Characteristics of Water Regime under Various Ecological Conditions, Lesovedenie, 1986, no. 4, pp. 70-75.Google Scholar
  17. 17.
    Oren, R., Werk, K.S., and Schulze, E.D., Relationships between Foliage and Conducting Xylem in Picea abies (L.), Trees, 1986, vol. 1, pp. 61-69.Google Scholar
  18. 18.
    Voronin, P.Yu., Konovalov, P.V., and Mao Zijun., Photosynthesis Limits Carbon Sequestering in the Taiga Zone of Northeastern Europe, Fiziol. Rast. (Moscow), 2003, vol. 50, pp. 118-122 (Russ. J. Plant Physiol., Engl. Transl.).Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2004

Authors and Affiliations

  • P. Yu. Voronin
    • 1
  • P. V. Konovalov
    • 1
  • V. K. Bolondinskii
    • 2
  • L. K. Kaipiainen
    • 2
  1. 1.Timiryazev Institute of Plant Physiology, Russian Academy of SciencesMoscowRussia
  2. 2.Institute of Forestry, Karelian Research CenterRussian Academy of SciencesPetrozavodsk, KareliaRussia

Personalised recommendations