Advertisement

Russian Journal of Nondestructive Testing

, Volume 39, Issue 8, pp 615–628 | Cite as

On Possibility of Nondestructive Testing of the Grain Size in the Intermediate Stages of Manufacturing Electrical Steel

  • M. L. Lobanov
  • I. P. Sysolyatina
  • V. K. Chistyakov
  • Yu. L. Gobov
  • E. S. Gorkunov
  • S. M. Zadvorkin
  • G. S. Korzunin
  • A. G. Lavrent'ev
  • D. V. Perov
  • A. B. Rinkevich
  • V. A. Sandovskii
Article

Abstract

The results of investigation of the relation between the grain size in the intermediate stages of manufacturing electrical steel and various physical characteristics are given. The investigations are carried out for the purpose of clarifying the possibility of using these characteristics for arranging nondestructive testing of the grain size in the process of steel manufacturing. The paper contains the results of tests performed with the use of the methods of measuring the leakage magnetic fields on the grain boundaries by means of yttrium iron garnet films employed for visualization of the magnetic fields, the Barkhausen effect, the ultrasonic and eddy-current methods, the electromagnetic-acoustic conversion (EMAC) method, and the use of the relation between the grain size and the value of the coercive force.

Keywords

Iron Grain Size Magnetic Field Physical Characteristic Yttrium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shteinberg, S.S., Metallovedenie. t. III. Spetsial'nye stali (Physical Metallurgy. Vol. 3. Special Steels), Sverdlovsk, ONTI-NKTP-SSSR, 1935.Google Scholar
  2. 2.
    Barret, Ch.S., Structure of Metals. Translated into Russian under the title Struktura Metallov, Moscow, Metallurgizdat, 1948.Google Scholar
  3. 3.
    Wasserman, H. and Greven, I., Textures of Metal Materials. Translated from German into Russian under the title Tekstury Metallicheskikh Materialov, Moscow: Metallurgiya, 1969.Google Scholar
  4. 4.
    Adamesku, R.A., Gel'd, P.V., and Mityushov, E.A., Anizotropiya fizicheskikh svoistv metallov (Anisotropy of Physical Properties of Metals), Moscow: Metallurgiya, 1985.Google Scholar
  5. 5.
    Mager, A., Uber den Einuss der Korngrosse auf die Koerzitivkraft, Ann. der Phys., 1952, vol. 11, pp. 15–16.Google Scholar
  6. 6.
    Yensen, T.D., Magnetic Properties of the Ternary Alloys Fe-Si-C, TAJEF, 1924, vol. 43, pp. 145–151.Google Scholar
  7. 7.
    Yensen, T.D. and Ziedler, N.A., Magnetic Properties of Iron as Affected by Carbon, Oxygen, and Grain Size, TASM, 1935, vol. 35, pp. 556–576.Google Scholar
  8. 8.
    Sizoo, G.J., Uber dem Zusammengang zwischen Korngrosse und magnetischen Eigenschaften bei rein Eisen, Zs. F. Phys., 1948, no. 13, pp. 557–562.Google Scholar
  9. 9.
    Bukhvalov, A.B., Vil'danova, N.F., and Gorkunov, E.S., Phenomenological Description of Ordering Iron under Deformation, Fiz. Met. Metalloved., 1999, vol. 88, no. 1, pp. 104–112.Google Scholar
  10. 10.
    Druzhinin, V.V., Magnitnye svoistva elektrotekhnicheskoi stali (Magnetic Properties of Electrical Steel), Moscow, Energiya, 1974.Google Scholar
  11. 11.
    Vonsovskii, S.V. and Shur, Ya.S., Ferromagnetizm (Ferromagnetism), Moscow: GITTL, 1948.Google Scholar
  12. 12.
    Druzhinin, V.V. and Yanus, R.I., atInhomogeneity of Ferromagnets as the Reason of Additional Losses in Their Remagnetization, Zh. Tekh. Fiz., vol. 17, no. 6, pp. 641–650.Google Scholar
  13. 13.
    Vlasov, K.B., Effect of the Grain Size on the Magnetic Properties of Sheet Ferromagnetic Materials in the Large Induction Range, Fiz. Met. Metalloved., 1955, vol. 1, no. 1, pp. 70–74.Google Scholar
  14. 14.
    Druzhinin, V.V., Kazadzhan, L.B., and Prasova, T.I., Dependence of Additional Losses for Eddy Currents on the Grain Size in Fine-Grain Dynamo Steel, Fiz. Met. Metalloved., 1962, vol. 13, no. 4, pp. 635–636.Google Scholar
  15. 15.
    Borisenko, V.G., Rational Method of Estimation of the Magnetic Properties of Cold Rolled Transformer Steel, Zavodskaya Laboratoriya, 1959, vol. 25, no. 12, pp. 1422–1424.Google Scholar
  16. 16.
    Kolov, M.I., Ershova, L.P., and Selivanov, N.M., Effect of the Grain Size on the Magnetic Properties of Cold Rolled Transformer Steel, Stal', 1962, no. 8, pp. 744–747.Google Scholar
  17. 17.
    Janda Emil and Rothbauer Antonin, Effect of the Grain Size on the Magnetic Properties of Textured Transformer Steel, Huth. Listy, 1973, vol. 28, no. 4, pp. 263–266.Google Scholar
  18. 18.
    Starodubtsev, Yu.N., Malygin, M.A., Segal', V.M., and Kataev, V.A., Effect of the Grain Size on the Magnetic Induction and Losses in Electrical Steel, Fiz. Met. Metalloved., 1987, vol. 64, no. 5, pp. 905–909.Google Scholar
  19. 19.
    Druzhinin, V.V. and Burdakova, Yu.P., Relation between Losses on Hysteresis and Eddy Current in Electrical Steel, Elektrichestvo, 1956, no. 8, pp. 50–52.Google Scholar
  20. 20.
    Mironov, L.V., Formation of the Texture in Annealing of Cold Rolled Transformer Steel, Izv. AN SSSR, Ser. Fiz., 1958, vol. 22, no. 10, pp. 1231–1236.Google Scholar
  21. 21.
    Agapova, E.V., On Relation between the Grain Size and the Grain Crystallographic Orientation in Cold Rolled Transformer Steel, Fiz. Met. Metalloved., 1963, vol. 16, no. 4, pp. 620–622.Google Scholar
  22. 22.
    Vorob'ev, G.M., Grechnyi, Ya.V., and Kotova, L.V., Effect of the Degree of Texture Perfection and the Grain Size on the Magnetic and Electric Properties of Transformer Steel, Stal', 1965, no. 1, pp. 67–71.Google Scholar
  23. 23.
    Titorov, D.B., Sokolov, and B.K., Schastlivtseva, I.K., Controlling the Size and Shape of Grains in Textured Transformer Steel, Fiz. Met. Metalloved., 1972, vol. 34, no. 4, pp. 811–815.Google Scholar
  24. 24.
    Schastlivtseva, I.K., Kazadzhan, L.B., Sokolov, B.K. et al., Effect of the Size and Shape of Grains on Magnetic Properties of Textured Transformer Steel, Fiz. Met. Metalloved., 1976, vol. 41, no. 3, pp. 442–448.Google Scholar
  25. 25.
    Kudryavtsev, I.P., Tekstury v metallakh i splavakh (Textures in Metals and Alloys), Moscow: Metallurgiya, 1965.Google Scholar
  26. 26.
    Kokhman, L.V., Bronnikov, V.K., and German, D.I., Semiautomatic Ultrasonic Immersion Testing of the Grain Size in Stainless Pipes, In: Issledovaniya po fizike metallov i nerazrushayushchim metodam kontrolya (Investigations on Metal Physics and Nondestructive Testing Methods), Minsk, AN BSSR, 1968, pp. 335–342.Google Scholar
  27. 27.
    Rikhter, G., Device for Nondestructive Measurements of the Grain Size and Anisotropy, Defektoskopiya, 1978, no. 2, pp. 69–70.Google Scholar
  28. 28.
    Great fur die zerstorungfrei Korngroben und Texturmessung, Stahl u. Eisen, 1977, vol. 97, no. 11, pp. 565–566.Google Scholar
  29. 29.
    Device for Nondestructive Testing of the Grain Size and Texture, Chernye Metally, 1977, no. 11, pp. 31–32.Google Scholar
  30. 30.
    Chervonenkis, A.Ya. and Kubrakov, N.V., Magneto-Optical Visualization and Topographic Mapping of Magnetic Fields, Pis'ma v Zh. Tekh. Fiz., 1982, vol. 8, no. 11, pp. 696–699.Google Scholar
  31. 31.
    Rondoshkin, V.V. and Chervonenkis, A.Ya., Prikladnaya magnitooptika (Applied Magnetooptics), Moscow: Energoizdat, 1990.Google Scholar
  32. 32.
    Kubrakov, N.V., Method of Magneto-Optical Visualization and Topographic Mapping of Spatially Nonuniform Magnetic Fields, Trudy IOFAN, 1992, vol. 35, pp. 136–163.Google Scholar
  33. 33.
    Gobov, Yu.L. and Taluts, A.G., Formation of Magnetic Domain Structures with Different Topologies Mapping Three-Dimensional Magnetic Field Distribution, Defektoskopiya, 1997, no. 12, pp. 43–48.Google Scholar
  34. 34.
    Lomaev, G.V., Malyshev, V.S., and Degtyarev, A.P., Review of Use of the Barkhausen Effect in Nondestructive Testing, Defektoskopiya, 1984, no. 3, pp. 54–70.Google Scholar
  35. 35.
    Gorkunov, E.S. and Dragoshanskii, Yu.N., Barkhausen Effect and its Use in Testing the Structure of Ferromagnetic Materials. Review I. Role of Local Flaws in CrystallographicOrientation of Ferromagnets, Defektoskopiya, 1999, no. 6, pp. 3–23.Google Scholar
  36. 36.
    Gorkunov, E.S., Dragoshanskii, Yu.N. and Mikhovski, M., Barkhausen Effect and its Use in Structure Testing of Ferromagnetic Materials. Review III. Effect of Crystalline Grain Size, Defektoskopiya, 1999, no. 8, pp. 3–25.Google Scholar
  37. 37.
    Korzunin, G.S. and Lavrent'ev, A.G., Testing of Parameters of Crystallographic Texture of Electric Steel on the Basis of the Barkhausen Noise Flux, Defektoskopiya, 1999, no. 6, pp. 24–28.Google Scholar
  38. 38.
    Shulika, V.V., Lavrent'ev, A.G., Potapov, A.P., and Korzunin, G.S., Effect of Thermomagnetic Treatments on the Parameters of the Barkhausen Effect in Fe73:5Cu1Nb3Si13:5B9 Alloy, Fiz. Met. Metalloved., 2002, vol. 93, no. 6, pp. 55–57.Google Scholar
  39. 39.
    Shakhnin, V.A., Investigation of the Possibilities of Testing Electric Steel on the Basis of the Barkhausen Jumps, Thesis of Cand. Dissert., Tomsk, 1980.Google Scholar
  40. 40.
    Barkhatov B.V. and Permikin, V.S., Method of Ultrasonic Testing of the State of Metal Operating under Creep Conditions, Prediction of its Residual Life-Time, and an Acoustic Unit for its Realization (Variants), Patent RF no. 2177612, Moscow, 27.12.01.Google Scholar
  41. 41.
    Viktorov, V.A., Fizicheskie osnovy primeneniya ul'trazvukovykh voln Releya i Lemba v tekhnike (Physical Principles of Application of the Rayleigh and Lamb Waves to Technology), Moscow: Nauka, 1966.Google Scholar
  42. 42.
    Kifer, I.I., Ispytaniya ferromagnitnykh materialov (Testing of Ferromagnetic Materials), Moscow: Energiya, 1969.Google Scholar
  43. 43.
    Yanus, R.I., Magnitnaya defektoskopiya (Nondestructive Magnetic Testing), Moscow: Gostekhizdat, 1946.Google Scholar
  44. 44.
    Pribory dlya nerazrushayushchego kontrolya materialov i izdelii. Kn. 2. (Instruments for Nondestructive Testing of Materials and Workpieces. Vol. 2.), Klyuev, V.V. (Ed.), Moscow: Mashinostroenie, 1976.Google Scholar
  45. 45.
    Komarov, V.A., and Kononov, P.S., Study of the Direct and Inverse Electromagnetic-Acoustic Conversion in Ferromagnetic Rods, Defektoskopiya, 1978, no. 5, pp. 20–27.Google Scholar
  46. 46.
    Komarov, V.A., and Revina, N.A., Using the Resonance Electromagnetic-Acoustic Conversion for Testing the Quality of Heat Treatment of Martensite Steels, Defektoskopiya, 1984, no. 2, pp. 66–73.Google Scholar
  47. 47.
    Komarov, V.A., Kvazistatsionarnoe elektromagnitno-akusticheskoe preobrazovanie v metallakh (Quasi-Steady Electromagnetic-Acoustic Conversion in Metals), Sverdlovsk, Ural Division, USSR Academy of Sciences, 1986.Google Scholar
  48. 48.
    Shakshin, N.I. and Deordiev, G.I., Methods of Elimination of the Effect of Damping Factors in Resonance Electromagnetic-Acoustic Testing, Defektoskopiya, 1986, no. 12, pp. 11–20.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2004

Authors and Affiliations

  • M. L. Lobanov
    • 1
    • 2
  • I. P. Sysolyatina
    • 1
    • 2
  • V. K. Chistyakov
    • 1
    • 2
  • Yu. L. Gobov
    • 1
    • 2
  • E. S. Gorkunov
    • 1
    • 2
  • S. M. Zadvorkin
    • 1
    • 2
  • G. S. Korzunin
    • 1
    • 2
  • A. G. Lavrent'ev
    • 1
    • 2
  • D. V. Perov
    • 1
    • 2
  • A. B. Rinkevich
    • 1
    • 2
  • V. A. Sandovskii
    • 1
    • 2
  1. 1.OOO VIZ-STAL' Institute of Metal Physics, Ural DivisionRussian Academy of SciencesYekaterinburgRussia
  2. 2.Institute of Mechanical Engineering, Ural DivisionRussian Academy of SciencesYekaterinburgRussia

Personalised recommendations