Russian Microelectronics

, Volume 33, Issue 5, pp 292–297 | Cite as

Controlling Electrical Transport through Bundles of Single-Wall Carbon Nanotubes

  • I. I. Bobrinetskii
  • V. K. Nevolin
  • A. A. Stroganov
  • Yu. A. Chaplygin


A technique is developed of the deposition and electrode-bonding of single-wall carbon nanotubes. The causes are investigated of breakdown observed at the nanotube–electrode interface. A method is proposed for the conduction alteration of as-prepared bundles, using electrical breakdown. A mock-up of p-channel FET is produced from a nanotube bundle. Its static performance is measured.


Carbon Nanotubes Electrical Transport Electrical Breakdown Conduction Alteration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Carbon Nanotubes: Synthesis, Structure, Properties, and Applications, Dresselhaus, M.S., Dresselhaus, G., and Avouris, P., Eds., Berlin: Springer-Verlag, 2001.Google Scholar
  2. 2.
    Collins, P.G. and Avouris, P., Nanotubes for Electronics, Sci. Am.,2000, vol. 283, no. 6, pp. 62–69.Google Scholar
  3. 3.
    Tans, S.J., Verschueren, A.R.M., and Dekker, C., Room-Temperature Transistor Based on a Single Carbon Nan-otube, Nature, 1998, vol. 393, pp. 49–51.CrossRefGoogle Scholar
  4. 4.
    Martel, R., Schmidt, T., Shea, H.R., Hertel, T., and Avouris, P., Single-and Multi-Wall Carbon Nanotube Field-Effect Transistors, Appl. Phys. Lett.,1998, vol. 73, no. 17, pp. 2447–2449.CrossRefGoogle Scholar
  5. 5.
    Bachtold, A., Hadley, P., Nakanishi, T., and Dekker, C., Logic Circuits with Carbon Nanotube Transistors, Sci-ence, 2001, vol. 249, pp. 1317–1320.Google Scholar
  6. 6.
    Derycke, V., Martel, R., Appenzeller, J., and Avouris, P., Carbon Nanotube Inter-and Intramolecular Logic Gates, Nano Lett., 2001, vol. 1, no. 9, pp. 453–456.CrossRefGoogle Scholar
  7. 7.
    Liu, X., Lee, C., Zhou, C., and Han, J., Carbon Nanotube Field-Effect Inverters, Appl. Phys. Lett.,2001, vol. 79, no. 20, pp. 3329–3331.CrossRefGoogle Scholar
  8. 8.
    Bobrinetskii, I.I., Chaplygin, Yu.A., Nevolin, V.K., Pet-rik, V.I., and Stroganov, A.A., The Atomic Structure of Nanotubes Synthesized from a Highly Reactive Carbon Mixture, Tech. Phys. Lett., 2003, vol. 29, no. 4, pp. 347–349.CrossRefGoogle Scholar
  9. 9.
    Yao, Z., Kane, C.L., and Dekker, C., High-Field Electri-cal Transport in Single-Wall Carbon Nanotubes, Phys. Rev. Lett., 2000, vol. 84, no. 13, pp. 2941–2944.CrossRefGoogle Scholar
  10. 10.
    Nakanishi, T., Bachtold, A., and Dekker, C., Transport through the Interface between a Semiconducting Carbon Nanotube and a Metal Electrode, Cond. Matt.B, 2002. vol. 66, pp. 037 703-1-037 703-4.Google Scholar
  11. 11.
    Tans, S.J., Devoret, M.H., Dai, H., Thess, A., Smal-ley, R., Geerligs, L.J., and Dekker, C., Individual Single-Wall Nanotubes as Quantum Wires, Nature, 1997, vol.386, no. 6624, pp. 474–477.CrossRefGoogle Scholar
  12. 12.
    Stahl, H., Appenzeller, J., Martel, R., Avouris, P., and Lengeler, B., Intertube Coupling in Ropes of Single-Wall Carbon Nanotubes, Phys. Rev. Lett., 2000, vol. 85, no. 24, pp. 5186–5189.CrossRefGoogle Scholar
  13. 13.
    Odom, T.W., Huang, J.-L., Kim, P., and Lieber, C.M., Structure and Electronic Properties of Carbon Nano-tubes, J. Phys. Chem.B, 2000, vol. 104, no. 13, pp.2794–2809.CrossRefGoogle Scholar
  14. 14.
    Clauss, W., B ergeron, D.J., and Johnson, A.T., Atomic Resolution STM Imaging of a Twisted Single-Wall Car-bon Nanotube, Phys. Rev.B, 1998, vol. 58, no. 8, pp.4266–4269.CrossRefGoogle Scholar
  15. 15.
    Collins P.G., Arnold, M.S., and Avouris, P., Engineering Carbon Nanotubes and Nanotube Circuits Using Electri-cal Breakdown, Science, 2001, vol. 292, pp. 706–709.CrossRefGoogle Scholar
  16. 16.
    Radosavljevic, M., Lefebvre, J., and Johnson, A.T., High-Field Electrical Transport and Breakdown in Bun-dles of Single-Wall Carbon Nanotubes, Phys. Rev.B, 2001, vol. 64, pp. R241 307-1-R241 307-4.Google Scholar
  17. 17.
    Heinze, S., Terso, J., Martel, R., Derycke, V., Appen-zeller, J., and Avouris, P., Carbon Nanotubes as Schottky Barrier Transistors, Phys. Rev. Lett., 2002, vol. 89, no.10, pp. 106 801-1-106 801-4.CrossRefGoogle Scholar
  18. 18.
    Rochefort, A., Di Ventra, M., and Avouris, P., Switching Behavior of Semiconducting Carbon Nanotubes under an External Electric Field, Appl. Phys. Lett., 2001, vol.78, no. 17, pp. 2521–2523.CrossRefGoogle Scholar
  19. 19.
    Wildöer, J.W.G., Venema, L.C., Rinzler, A.G., Smal-ley, R.E., and Dekker, C., Electronic Structure of Atom-ically Resolved Carbon Nanotubes, Nature, 1998, vol.391, pp. 59–62.CrossRefGoogle Scholar
  20. 20.
    Wind, S.J., Appenzeller, J., Martel, R., Derycke, V., and Avouris, P., Vertical Scaling of Carbon Nanotube Field-Effect Transistors Using Top Gate Electrodes, Appl. Phys. Lett., 2002, vol. 80, no. 20, pp. 3817–3819.CrossRefGoogle Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2004

Authors and Affiliations

  • I. I. Bobrinetskii
    • 1
  • V. K. Nevolin
    • 1
  • A. A. Stroganov
    • 1
  • Yu. A. Chaplygin
    • 1
  1. 1.Moscow Institute of Electronic Engineering (Technical University)MoscowRussia

Personalised recommendations