Russian Journal of Organic Chemistry

, Volume 39, Issue 11, pp 1618–1628 | Cite as

13C-13C Spin-Spin Coupling Constants in Structural Studies: XXXIV. Nonempirical Calculations: Small Heterocycles

  • L. B. Krivdin
  • T. A. Kuznetsova
Article

Abstract

An ab initio calculation was carried out for 13C-13C spin-spin coupling constants in a series of saturated three- and four-membered heterocycles within a framework of second order perturbation theory using an approximation of second order polarization propagator. The accounting for electron correlation effects and the use of correlation-consistent basis sets with addition of functions allowing for internal correlation and of dense functions on nuclei permitted to obtain good quantitative agreement with experimental data.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Krivdin, L.B. and Della, E.W., Prog. NMR Spectrosc., Emsley, J.V., Feeney, V., and Sutcliffe, L.H., Oxford: Pergamon Press., 1991, vol. 23, p. 301; Krivdin, L.B. and Kalabin, G.A., Prog. NMR Spectrosc., 1989, vol. 21, p. 293; Denisov, A.Yu., Mamatyuk, V.I., Krivdin, L.B., and Kalabin, G.A., Spinspinovoe vzaimodeistvie 13 C-13 C i 13 C-1 H v spektrakh YaMR organicheskikh soedinenii (Spin-spin Coupling 13C-13C and 13C-1H in NMR Spectra of Organic Compounds), Novosibirsk: NIOKh, 1989, p. 430.Google Scholar
  2. 2.
    Marshall, J.L., Carbon-carbon and carbon-proton NMR couplings: applications to organic stereochemistry and conformational analysis, Marchand, A.P., Deerfield Beach: Verlag Chemie, 1983, p. 241 p.; Krivdin, L.B. and Zinchenko, S.V., Curr. Org. Chem., Rahman, A., Ed., The Netherlands: Bentham Sci. Pub., 1998, vol. 2, p. 173.Google Scholar
  3. 3.
    Albertsen, P. and Jorgensen, P., Chem. Phys. Lett., 1980, vol. 76, p. 354.Google Scholar
  4. 4.
    Vizioli, C.V. and Ruiz de Azua, M.C., Mol. Phys., 2000, vol. 98, p. 891.Google Scholar
  5. 5.
    Enevoldsen, T., Oddershede, J., and Sauer, S.P.A., Theor., Chem. Acc., 1998, vol. 100, p. 275.Google Scholar
  6. 6.
    San Fabian, J., Casanueva, J., San Fabian, E., and Guilleme, J., J. Chem Phys., 112, p. 4143; Astrand, P.O., Ruud, K., Mikkelsen, K.V., and Helgaker, T., J. Chem. Phys., 1999, vol. 110, p. 9463; San Fabian, J., Gasanueva, J., San Fabian, E., and Guilleme, J., J. Chem. Phys., 2000, vol. 112, p. 4143; Perera, S.A. and Barlett, R.J., J. Am. Chem. Soc., 2000, vol. 122, p. 1231.Google Scholar
  7. 7.
    Geertsen, J. and Oddershede, J., Chem. Phys., 1984, vol. 90, p. 301.Google Scholar
  8. 8.
    Helgaker, T., Jaszunski, M., Ruud, K., and Gorska, A., Theor., Chem. Acc., 1998, vol. 99, p. 175.Google Scholar
  9. 9.
    Geertsen, J., Oddershede, J., and Scuseria, G.E., J. Chem. Phys., 1987, vol. 87, p. 2138.Google Scholar
  10. 10.
    Bryce, D.L. and Wasylishen, R.E., J. Am. Chem. Soc., 2000, vol. 122, p. 3197.Google Scholar
  11. 11.
    Guilleme, J. and San Fabian, J., J. Chem. Phys., 1998, vol. 109, p. 8168; Guilleme, J., San Fabian, J., Casanueva, J., and Diez, E., Chem. Phys. Lett., 1999, vol. 314, p. 168; Pecul, M., Leszczynski, J., and Sadlej, J., J. Phys. Chem. A, 2000, vol. 104, p. 8105; Fukui, H., Baba, T., and Kurogi, Y., J. Chem. Phys., 2000, vol. 112, p. 3532; Wiggleworth, R.D., Raynes, W.T., Kirpekar, S., Oddershede, J., and Sauer, S.P.A., J. Chem. Phys., 2000, vol. 112, p. 3735; Perera, S.A., Nooijen, M., and Barlett, R.J., J. Chem., Phys., 1996, vol. 104, p. 3290; Scuseria, G.E., Chem. Phys. Lett., 1986, vol. 127, p. 236.Google Scholar
  12. 12.
    Kirpekar, S. and Sauer, S.P.A., Theor. Chem. Acc., 1999, vol. 103, 146; Enevoldsen, T., Visscher, L., Saue, T., Jensen, H.J.A., and Oddershede, J., J. Chem. Phys., 2000, vol. 112, p. 3493; Sauer, S.P.A. and Raynes, W.T., J. Chem. Phys., 2000, vol. 113, p. 3121; Astrand, P.O., Mikkelsen, K.V., Jorgensen, P., Ruud,K., and Helgaker, T., J. Chem. Phys., 1998, vol. 108, p. 2528.Google Scholar
  13. 13.
    Perera, S.A. and Bartlett, R.J., J. Amer. Chem. Soc., 2000, vol. 122, p. 1231; Del Bene, J.E., Perera, S.A., Bartlett, R.J., J. Am. Chem. Soc., 2000, vol. 122, p. 3560.Google Scholar
  14. 14.
    Provasi, P.F., Aucar, G.A., and Sauer, S.P.A., J. Chem. Phys., 2000, vol. 112, p. 6201.Google Scholar
  15. 15.
    Provasi, P.F., Aucar, G.A., and Sauer, S.P.A., J. Chem. Phys., 2001, vol. 115, p. 1324.Google Scholar
  16. 16.
    Barone, V., Peralta, J.E., Contreras, R.H., Sosnin, A.V., and Krivdin, L.B., Magn. Res. Chem., 2001, vol. 39, p. 600; Czernek, J., Lang, J., and Sklenar, V., J. Phys. Chem. A, 2000, vol. 104, p. 2788; Sychrovsky, V., Grafenstein, J., and Cremer,D., J. Chem. Phys., 2000, vol. 113, p. 3530; Bagno, A., Chem. Eur. J., 2000, vol. 6, p. 2925; Peralta, J.E., Barone, V., Ruiz de Azua, M.C., and Contreras, R.H., Mol. Phys., 2001, vol. 99, p. 655.Google Scholar
  17. 17.
    Cloran, F., Carmichael, I., and Serianni, A.S., J. Am. Chem. Soc., 2000, vol. 123, p. 4781.Google Scholar
  18. 18.
    Barfield, M, Dingley, A.J., Feigon, J., and Grzesiek, S., J. Am. Chem. Soc., 2001, vol. 123, p. 4014.Google Scholar
  19. 19.
    Helgaker, T., Jaszunski, M., and Ruud, K., Chem. Rev., 1999, vol. 99, p. 293; Contreras, R.H., Peralta, J.E., Giribet, C.G., Ruiz de Azua, M.C., and Facelli, J.C., Ann. Rep. NMR Spectrosc., 2000, vol. 41, p. 55.Google Scholar
  20. 20.
    Ramsey, N.F., Phys. Rev., 1953, vol. 91, p. 303.Google Scholar
  21. 21.
    Nielsen, E.S., Jorgensen, P., and Oddershede, J., J. Chem., Phys., 1980, vol. 73, p. 6238; Geertsen, J. and Oddershede, J., Chem., Phys., 1984, vol. 90, p. 301.Google Scholar
  22. 22.
    Helgaker, T., Jensen, H.J.Aa., Jorgensen, P., Olsen, J., Ruud, K., Agren, H., Andersen, T., Bak, K.L., Bakken, V., Christiansen, O., Dahle, P., Dalskov, E.K., Enevoldsen, T., Fernandez, B., Heiberg, H., Hettema, H., Jonsson,D., Kirpekar, S., Kobayashi, R., Koch, H., Mikkelsen, K.V., Norman, P., Packer, M.J., Saue, T., Sauer, S.P.A., Taylor, P.R., and Vahtras, O., DALTON. An electronic structure program, Release 1.1, 1999.Google Scholar
  23. 23.
    Dunning, T.H., Jr., J. Chem. Phys., 1989, vol. 90, p. 1007; Woon, D.E. and Dunning, T.H., Jr., J. Chem. Phys., 1993, vol. 98, p. 1358.Google Scholar
  24. 24.
    Woon, D.E., Dunning, T.H., Jr., J. Chem. Phys., 1995, vol. 103, p. 4572.Google Scholar
  25. 25.
    Schulman, J.M. and Kaufman, D.N., J. Chem. Phys., 1972, vol. 57, p. 2328.Google Scholar
  26. 26.
    Hehre, W.J., Ditchfield, R., and Pople, J.A., J. Chem. Phys., 1972, vol. 56, p. 2257; Hariharan, P.C. and Pople, J.A., Theor. Chim., Acta, 1973, vol. 28, p. 213; Krishnan, R., Binkley, J.S., Seeger, R., and Pople, J.A., J. Chem. Phys., 1980, vol. 72, p. 650.Google Scholar
  27. 27.
    Becke, A.D., J. Chem. Phys., 1993, vol. 98, p. 5648.Google Scholar
  28. 28.
    Lee, C., Yang W., and Parr, R.G., Phys. Rev. B, 1988, vol. 37, p. 785.Google Scholar
  29. 29.
    Kuznetsova, T.A., Istomina, N.V., and Krivdin, L.B., Zh. Org. Khim., 1997, vol. 33, p. 1703.Google Scholar
  30. 30.
    Krivdin, L.B. and Kuznetsova, T.A., Zh. Org. Khim., vol. 39, p. 744.Google Scholar
  31. 31.
    Coolidge, M.B. and Stewart, J.J.P., QCPE 455 (Release 6.0), 1990.Google Scholar
  32. 32.
    Schmidt, M.W., Baldridge, K.K., Boatz, J.A, Elbert, S.T., Gordon, M.S., Jensen, J.H., Koseki, S., Matsunaga, N., Nguyen, K.A., Su, S.J., Windus, T.L., Dupuis, M., and Montgomery, J.A., J. Comput. Chem., 1993, vol. 14, p. 1347.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2003

Authors and Affiliations

  • L. B. Krivdin
    • 1
  • T. A. Kuznetsova
    • 1
  1. 1.Angarsk State Technical AcademyAngarskRussia

Personalised recommendations