Advertisement

Russian Journal of Genetics

, Volume 40, Issue 10, pp 1111–1126 | Cite as

Analysis of Intraspecific Divergence of Hexaploid Wheat Triticum spelta L. by C-Banding of Chromosomes

  • O. S. Dedkova
  • E. D. Badaeva
  • O. P. Mitrofanova
  • A. V. Zelenin
  • V. A. Pukhalskiy
Article

Abstract

Intraspecific divergence of hexaploid wheat Triticum spelta was studied by C-banding method in 41 accessions of different geographic origins. The spelt accessions did not differ in karyotype structure or heterochromatin distribution from common wheat, but showed greater intraspecific polymorphism by chromosome rearrangements (translocations, inversions) and banding patterns. On evidence of C-banding patterns, spelt was assumed to occupy an intermediate position between tetraploid and hexaploid wheat species. Accessions of the Asian spelt subspecies had more diverse banding patterns than European accessions. A relatively high frequency of chromosome rearrangements was observed in Iranian accessions. Visual analysis revealed high uniformity of chromosome banding patterns in T. spelta populations of Afghanistan, Spain, and Germany (Bavarian group), suggesting a significant role of the founder effect in their evolution.

Keywords

Banding Pattern Chromosome Rearrangement Common Wheat Intraspecific Divergence Hexaploid Wheat 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Perrino, P., Laghetti, G., D'Antuono, L.F., et al., Ecogeographical Distribution of Hulled Wheat Species, Hulled Wheat: Proc. 1st Int. Workshop on Hulled Wheats, 21-22 July, 1995, Castelvecchio Pascoli, Tuskany (Italy): IPGRI, 1996, pp. 101–119.Google Scholar
  2. 2.
    Kuckuck, H., —Experimentelle Untersuchungen zur Entstehung der Kulturweizen, Z. Pflanzenzucht, 1964, vol. 51, pp. 97–140.Google Scholar
  3. 3.
    Dorofeev, V.F., Transcaucasian Wheat (Botanic Composition, Evolution, and Role in Breeding), Tr. Prikl. Bot., Genet. Sel., 1972, vol. 47, no. 1.Google Scholar
  4. 4.
    Udachin, R.A. and Shakhmedov, I.Sh., Pshenitsa v Sred-nei Azii (Wheat in Central Asia), Tashkent: FAN UzSSR, 1984.Google Scholar
  5. 5.
    Dorofeev, V.F., Filatenko, A.A., Migusheva, E.F., Udachin, R.A., and Yakubtsiner, M.M., Pshenitsa (Wheat), Leningrad: Kolos, 1979.Google Scholar
  6. 6.
    McFadden, E.S. and Sears, E.R., The Origin of Triticum spelta and Its Free-Threshing Hexaploid Relatives, J. Hered., 1946, vol. 37, pp. 81–107.Google Scholar
  7. 7.
    Sachs, L., Chromosome Behavior in Species Hybrids with Triticum timopheevi, Heredity, 1953, vol. 7, pp. 49–58.Google Scholar
  8. 8.
    Morris, E.R. and Sirs, E.R., Cytogenetics of Wheat and Related Forms, in Pshenitsa i ee uluchshenie (Wheat and Wheat Improvement), Moscow: Kolos, 1970, pp. 33–110.Google Scholar
  9. 9.
    Kihara, H., Origin of Cultivated Plants with Special Reference to Wheat, Seiken Ziho, 1975, vols. 25-26, pp. 1–24.Google Scholar
  10. 10.
    Zohary, D. and Hopf, M., Domestication of Plants in the Old World, The Origin and Spread of Cultivated Plants in West Asia, Europe, and Nile Valley, Oxford: Clarendon, 1988.Google Scholar
  11. 11.
    Feldman, M., Origin of Cultivated Wheat, The World Wheat Book: A History of Wheat Breeding, Bonjiean, A.P. and Angus, W.J., Eds., Londres: Tec&Doc/Intercept, 2001, pp. 3–56.Google Scholar
  12. 12.
    Goncharov, N.P., Sravnitel'naya genetika pshenits i ikh sorodichei (Comparative Genetics of Wheats and Their Relatives), Novosibirsk: Sibirskoe Universitetskoe Izd-vo, 2002.Google Scholar
  13. 13.
    Jaaska, V., NADP-Dependent Aromatic Alcohol Dehy-drogenase in Polyploid Wheats and Their Diploid Relatives: On the Origin and Phylogeny of Polyploid Wheats, Theor. Appl. Genet., 1978, vol. 53, pp. 209–217.Google Scholar
  14. 14.
    Luo, M.C., Yang, Z.L., and Dvorak, J., The Q Locus of Iranian and European Spelt Wheat, Theor. Appl. Genet., 2000, vol. 100, pp. 602–606.Google Scholar
  15. 15.
    Blatter, R.H.E., Jacomet, S., and Schlumbaum, A., Spelt-Specific Alleles in HMW Glutenins from Modern and Historical European Spelt (Triticum spelta L.), Theor. Appl. Genet., 2002, vol. 104, pp. 329–337.Google Scholar
  16. 16.
    Zurabishvili, T.G., Iordansky, A.B., and Badaev, N.S., Linear Differentiation of Cereal Chromosomes: II. Poly-ploid Wheats, Theor. Appl. Genet., 1978, vol. 51, pp. 201–210.Google Scholar
  17. 17.
    Seal, A.G., C-Banded Wheat Chromosomes in Wheat and Triticale, Theor. Appl. Genet., 1982, vol. 63, no. 1, pp. 39–47.Google Scholar
  18. 18.
    Endo, T.R. and Gill, B.S., Somatic Karyotype, Heterochromatin Distribution, and Nature of Chromosome Dif-ferentiation in Common Wheat, Triticum aestivum L. em Thell, Chromosoma, 1984, vol. 89, pp. 361–369.Google Scholar
  19. 19.
    Linde-Laursen, I., Cytology and Cytogenetics of Hordeum vulgare and Some Allied Species Using Chromosome Banding Technique, Riso: R-529, 1985.Google Scholar
  20. 20.
    Kawahara, T., Identification of Reciprocal Translocation Chromosome Types in the Emmer Wheats: III. Six Chro-mosome Types in Triticum dicoccoides, Jpn. J. Genet., 1987, vol. 62, pp. 197–204.Google Scholar
  21. 21.
    Badaeva, E.D., Badaev, N.S., Gill, B.S., and Filatenko, A.A., Intraspecific Karyotype Divergence in Triticum araraticum, Plant Syst. Evol., 1994, vol. 192, no. 1, pp. 117–145.Google Scholar
  22. 22.
    Badaeva, E.D., Friebe, B., and Gill, B.S., Genome Differentiation in Aegilops: 1. Distribution of Highly Repet-itive DNA Sequences on Chromosome of Diploid Species, Genome, 1996, vol. 39, no. 2, pp. 293–306.Google Scholar
  23. 23.
    Friebe, B. and Gill, B.S., C-Band Polymorphism and Structural Rearrangements Detected in Common Wheat (Triticum aestivum), Euphytica, 1994, vol. 78, pp. 1–5.Google Scholar
  24. 24.
    Friebe, B. and Gill, B.S., Chromosome Banding and Genome Analysis in Diploid and Cultivated Polyploid Wheats, Methods in Genome Analysis in Plants: Their Merits and Piffals, Jauhar, P.P., Ed., Boca Raton: CRC, 1996, pp. 39–60.Google Scholar
  25. 25.
    Kawahara, T. and Taketa, S., Fixation of 2A-4B Translocation Infers Monophyletic Origin of Ethiopian Tetraploid Wheat, Theor. Appl. Genet., 2000, vol. 101, pp. 705–710.Google Scholar
  26. 26.
    Badaev, N.S., Badaeva, E.D., Bol'sheva, N.L., and Zelenin, A.V., Identification of Wheat Chromosomes of the A and D Genomes with the Use of Substitutions and Rearrangements between Wheat and Triticale Homeologs, Dokl. Akad. nauk SSSR, 1983, vol. 273, no. 4, pp. 994–996.Google Scholar
  27. 27.
    Badaeva, E.D., Sozinova, L.F., Badaev, N.S., et al., “Chromosomal Passport” of Triticum aestivum L. em Thell. cv. Chinese Spring and Standardization of Chromosomal Analysis of Cereals, Cereal Res. Commun., 1990, vol. 18, no. 46, pp. 273–281.Google Scholar
  28. 28.
    Gill, B.S., Friebe, B., and Endo, T.R., Standard Karyotype and Nomenclature System for Description of Chro-mosome Bands and Structural Aberrations in Wheat (Triticum aestivum), Genome, 1991, vol. 34, no. 5, pp. 830–839.Google Scholar
  29. 29.
    Iordansky, A.B., Zurabishvili, T.G., and Badaev, N.S., Linear Differentiation of Cereal Chromosomes: 1. Common Wheat and Its Supposed Ancestors, Theor. Appl. Genet., 1978, vol. 51, no. 1, pp. 145–152.Google Scholar
  30. 30.
    Seal, A.G. and Bennett, M.D., The Rye Genome in Winter Hexaploid Triticales, Can. J. Genet. Cytol., 1981, vol. 23, pp. 647–653.Google Scholar
  31. 31.
    Badaeva, E.D., Genome Evolution in Wheats and Their Wild Relatives: A Molecular Cytogenetic Study, Doctoral (Biol.) Dissertation, Moscow: Engelhardt Inst. Mol. Biol., 2000.Google Scholar
  32. 32.
    Flyaksberger, K.A., Wheat: The Genus Triticum L., in Kul'turnaya flora SSSR. Khlebnye zlaki. Pshenitsy (Cultivated Flora of the Soviet Union: Cereals: Wheats), Moscow: Sovkhoznaya i Kolkhoznaya Literatura, 1935, pp. 17–404.Google Scholar
  33. 33.
    Zhukovskii, P.M., Kul'turnye rasteniya i ikh sorodichi (Cultivated Plants and Their Relatives), Leningrad: Kolos, 1971.Google Scholar
  34. 34.
    Romanova, Yu.A., Gubareva, N.K., Konarev, A.V., et al., Analysis of Gliadin Polymorphism in a Triticum spelta L. Collection, Genetika (Moscow), 2001, vol. 37, no. 9, pp. 1258–1265.Google Scholar
  35. 35.
    Vavilov, N.I., Mirovye resursy sortov khlebnykh zlakov, zernovykh bobovykh, l'na i ikh ispol'zovanie v selektsii. Pshenitsa (World Resources of Cultivars of Cereals, Legumes, and Flax and Their Use in Breeding: Wheat), Moscow: Nauka, 1964.Google Scholar
  36. 36.
    Schlegel, R., A Compendium of Reciprocal Translocations in Wheat, 2nd ed., Wheat Inf. Serv., 1996, vol. 83, pp. 36–46.Google Scholar
  37. 37.
    Romanova, Yu.A., The Use of Gliadin Polymorphism to Form a Rationally Organized Collection of Triticum spelta L., Cand. Sci. (Biol.) Dissertation, St. Petersburg, 2002.Google Scholar
  38. 38.
    Vavilov, N.I., Zakon gomologicheskikh ryadov v nasled-stvennoi izmenchivosti (The Law of Homological Series in Hereditary Variation), Leningrad: Nauka, 1987, pp. 33–126.Google Scholar
  39. 39.
    Dvorak, J., Luo, M.-C., Yang, Z.-L., and Zhang, H.-B., The Structure of the Aegilops tauschii Gene Pool and the Evolution of Hexaploid Wheat, Theor. Appl. Genet., 1998, vol. 97, pp. 657–670.Google Scholar
  40. 40.
    Schiemann, E., New Results on the History of Cultivated Cereals, J. Hered., 1951, vol. 5, pp. 305–320.Google Scholar
  41. 41.
    Liu, Y.G. and Tsunewaki, K., Restriction Fragment Length Polymorphism (RFLP) Analysis in Wheat: II. Linkage Maps of the RFLP Sites in Common Wheat, Jpn. J. Genet., 1991, vol. 5, pp. 617–633.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2004

Authors and Affiliations

  • O. S. Dedkova
  • E. D. Badaeva
  • O. P. Mitrofanova
  • A. V. Zelenin
  • V. A. Pukhalskiy

There are no affiliations available

Personalised recommendations