Russian Journal of Genetics

, Volume 40, Issue 8, pp 825–843 | Cite as

Evolution of Mammalian Sex Chromosomes: Cooperation of Genetic and Epigenetic Factors

  • O. V. Anopriyenko
  • S. M. Zakian


The X and Y chromosomes of mammals, which significantly differ in structure and genetic composition, are thought to originate from a pair of autosomes. During evolution of sex chromosomes in placental mammals, the degradation of the Y chromosome and inactivation spreading along the X chromosome occurred gradually and in concert. Thus, at the molecular level, the genetic and epigenetic factors interacted toward greater differentiation of the X/Y pair. In this review, in context of a comparison permitting to trace this evolutionary pathway, we consider the structural features of mammalian sex chromosomes focusing on the X-chromosomal genes and the unique epigenetic mechanism of their regulation. Possible causes and consequences of the genes escaping X inactivation and aspects of molecular mechanism of X-chromosome inactivation are discussed. A number of hypotheses are considered on evolutionary relationships of X-chromosome inactivation and other molecular processes in mammals.


Molecular Mechanism Structural Feature Molecular Level Evolutionary Relationship Epigenetic Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bull, J.J., Evolution of Sex-Determining Mechanisms, Menlo Park, CA: Benjamin Cummings, 1983.Google Scholar
  2. 2.
    Charlesworth, B., The Evolution of Sex Chromosomes, Science, 1991, vol. 251, no. 4997, pp. 1030–1033.Google Scholar
  3. 3.
    Charlesworth, B., The Evolution of Chromosomal Sex Determination and Dosage Compensation, Curr. Biol., 1996, vol. 1, no. 6, pp. 149–162.Google Scholar
  4. 4.
    Fridolfsson, A.K., Cheng, H., Copeland, N.G., et al., Evolution of the Avian Sex Chromosomes from an Ancestral Pair of Autosomes, Proc. Natl. Acad. Sci. USA, 1998, vol. 95, no. 14, pp. 8147–8152.Google Scholar
  5. 5.
    Nanda, I., Shan, Z., Schartl, M., et al., 300 Million Years of Conserved Synteny between Chicken Z and Human Chromosome 9, Nat. Genet., 1999, vol. 21, no. 3, pp. 258–259.Google Scholar
  6. 6.
    Pask, A. and Graves, J.A.M., Sex Chromosomes and Sex-Determining Genes: Insights from Marsupials and Monotremes, Cell. Mol. Life Sci., 1999, vol. 55, pp. 864–875.Google Scholar
  7. 7.
    Lyon, M.F., Gene Action in the X-Chromosome of the Mouse (Mus musculusL.), Nature, 1961, vol. 190, pp. 372–373.Google Scholar
  8. 8.
    Lucchesi, J.C., Dosage Compensation in Flies and Worms: The Ups and Downs of X-Chromosome Regulation, Curr. Opin. Genet. Dev., 1998, vol. 8, no. 2, pp. 179–184.Google Scholar
  9. 9.
    Miller, V.H., Dosage Compensation: Making 1X Equal 2X, Trends Cell Biol., 2000, vol. 10, pp. 54–56.Google Scholar
  10. 10.
    Sano, Y., Shimada, T., Nakashima, H., et al., Random Monoallelic Expression of Three Genes Clustered within 60 kb of Mouse T Complex Genomic DNA, Genome Res., 2001, vol. 11, no. 11, pp. 1833–1841.Google Scholar
  11. 11.
    Ohlsson, R., Paldi, A., and Graves, J.A., Did Genomic Imprinting and X Chromosome Inactivation Arise from Stochastic Expression?, Trends Genet., 2001, vol. 17, no. 3, pp. 136–141.Google Scholar
  12. 12.
    Rakyan, V.K., Blewitt, M.E., Druker, R., et al., Metastable Epialleles in Mammals, Trends Genet., 2002, vol. 18, no. 7, pp. 348–351.Google Scholar
  13. 13.
    Chandra, H.S., Is Human X Chromosome Inactivation a Sex-Determining Device?, Proc. Natl. Acad. Sci. USA, 1985, vol. 82, no. 20, pp. 6947–6949.Google Scholar
  14. 14.
    Koopman, P., Gubbay, J., Vivian, N., et al., Male Development of Chromosomally Female Mice Transgenic for Sry, Nature, 1991, vol. 351, no. 6322, pp. 117–121.Google Scholar
  15. 15.
    Cooper, D.W., Johnston, P.G., Watson, J.M., and Graves, J.A.M., X-Inactivation in Marsupials and Monotremes, Dev. Biol., 1993, vol. 4, pp. 117–128.Google Scholar
  16. 16.
    Graves, J.A.M., Disteche, C.M., and Toder, R., Gene Dosage in the Evolution and Function of Mammalian Sex Chromosomes, Cytogenet. Cell Genet., 1998, vol. 80, pp. 94–103.Google Scholar
  17. 17.
    Brown, C.J. and Greally, J.M., A Stain upon the Silence: Genes Escaping X Inactivation, Trends Genet., 2003, vol. 19, no. 8, pp. 432–438.Google Scholar
  18. 18.
    Jaenissh, R. and Bird, A., Epigenetic Regulation of Gene Expression: How the Genome Integrates Intrinsic and Environmental Signals, Nat. Genet. Suppl., 2003, vol. 33, pp. 245–254.Google Scholar
  19. 19.
    Ohno, S., Becak, W., and Becak, M.Z., X-Autosome Ratio and the Behavior Pattern of Individual X Chromosomes in Placental Mammals, Chromosoma, 1964, vol. 15, p. 14.Google Scholar
  20. 20.
    Pathak, S. and Stock, A.D., The X Chromosomes of Mammals: Karyological Homology as Revealed by Banding Techniques, Genetics, 1974, vol. 78, no. 2, pp. 703–714.Google Scholar
  21. 21.
    Ohno, S., Sex Chromosomes and Sex-Linked Genes, Berlin: Springer-Verlag, 1967.Google Scholar
  22. 22.
    Davisson, M.T., X-Linked Genetic Homologies between Mouse and Man, Genomics, 1987, vol. 1, no. 3, pp. 213–227.Google Scholar
  23. 23.
    Wakefield, M.J. and Graves, J.A., Comparative Maps of Vertebrates, Mamm Genome, 1996, vol. 7, no. 10, pp. 715–716.Google Scholar
  24. 24.
    Kuroiwa, A., Tsuchiya, K., Watanabe, T., et al., Conservation of the Rat X Chromosome Gene Order in Rodent Species, Chromosome Res., 2001, vol. 9, no. 1, pp. 61–67.Google Scholar
  25. 25.
    Watson, J.M., Spencer, J.A., Riggs, A.D., and Graves, J.A., The X Chromosome of Monotremes Shares a Highly Conserved Region with the Eutherian and Marsupial X Chromosomes Despite the Absence of X Chromosome Inactivation, Proc. Natl. Acad. Sci. USA, 1990, vol. 87, no. 18, pp. 7125–7129.Google Scholar
  26. 26.
    Sharp, P., Sex Chromosome Pairing during Male Meiosis in Marsupials, Chromosoma, 1982, vol. 86, no. 1, pp. 27–47.Google Scholar
  27. 27.
    Rappold, G.A., The Pseudoautosomal Regions of the Human Sex Chromosomes, Hum. Genet., 1993, vol. 92, no. 4, pp. 315–324.Google Scholar
  28. 28.
    Gianfrancesco, F., Sanges, R., Esposito, T., et al., Differential Divergence of Three Human Pseudoautosomal Genes and Their Mouse Homologs: Implications for Sex Chromosome Evolution, Genome Res., 2001, vol. 11, no. 12, pp. 2095–2100.Google Scholar
  29. 29.
    Ciccodicola, A., D'Esposito, M., Esposito, T., et al., Differentially Regulated and Evolved Genes in the Fully Sequenced Xq/Yq Pseudoautosomal Region, Hum. Mol. Genet., 2000, vol. 9, no. 3, pp. 395–401.Google Scholar
  30. 30.
    Mohandas, T.K., Speed, R.M., Passage, M.B., et al., Role of the Pseudoautosomal Region in Sex-Chromosome Pairing during Mail Meiosis: Meiotic Studies in a Man with a Deletion of Distal Xp, Am. J. Hum. Genet., 1992, vol. 51, pp. 526–533.Google Scholar
  31. 31.
    Goodfellow, P., Banting, G., Sheer, D., et al., Genetic Evidence That a Y-Linked Gene in Man Is Homologous to a Gene on the X Chromosome, Nature, 1983, vol. 302, no. 5906, pp. 346–349.Google Scholar
  32. 32.
    Graves, J.A.M., Wakefield, M.J., and Toder, R., The Origin and Evolution of the Pseudoautosomal Regions of Human Sex Chromosomes, Hum. Mol. Genet., 1998, vol. 7, no. 13, pp. 1991–1996.Google Scholar
  33. 33.
    Nesterova, T.B. and Zakiyan, S.M., X-Chromosome Inactivation in Mammals, Genetika (Moscow), 1994, vol. 30, no. 3, pp. 293–317.Google Scholar
  34. 34.
    Human Genome Sequencing Consortium, Initial Sequencing and Analysis of Human Genome, Nature, 2001, vol. 409, pp. 860–921.Google Scholar
  35. 35.
    Skaletsky, H., Kuroda-Kawaguchi, T., Minx, P.J., et al., The Male-Specific Region of the Human Y Chromosome Is a Mosaic of Discrete Sequence Classes, Nature, 2003, vol. 423, no. 6942, pp. 825–837.Google Scholar
  36. 36.
    Disteche, C.M., Brannan, C.I., Larsen, A., et al., the Human Pseudoautosomal GM-CSFReceptor a ?Subunit Gene Is Autosomal in Mouse, Nat. Genet., 1992, vol. 1, no. 5, pp. 333–336.Google Scholar
  37. 37.
    Milatovich, A., Kitamura, T., Miyajima, A., and Francke, U., Gene for the a-Subunit of the Human Interleukin-3 Receptor (IL3RA) Localized to the X-Y Pseudoautosomal Region, Am. J. Hum. Genet., 1993, vol. 53, no. 5, pp. 1146–1153.Google Scholar
  38. 38.
    Toder, R., Rappold, G.A., Schiebel, K., and Schempp, W., ANT3and STSAre Autosomal in Prosimian Lemurs: Implications for the Evolution of the Pseudoautosomal Region, Hum. Genet., 1995, vol. 95, no. 1, pp. 22–28.Google Scholar
  39. 39.
    Rugarli, E.I., Adler, D.A., Borsani, G., et al., Different Chromosomal Localization of the Clcn4Gene in Mus spretusand C57BL/6J Mice, Nat. Genet., 1995, vol. 10, no. 4, pp. 466–471.Google Scholar
  40. 40.
    Palmer, S., Perry, J., and Ashworth, A., A Contravention of Ohno’s Law in Mice, Nat. Genet., 1995, vol. 10, no. 4, pp. 472–476.Google Scholar
  41. 41.
    Wilcox, S.A., Watson, J.M., Spencer, J.A., and Graves, J.A., Comparative Mapping Identifies the Fusion Point of an Ancient Mammalian X-Autosomal Rearrangement, Genomics, 1996, vol. 35, no. 1, pp. 66–70.Google Scholar
  42. 42.
    Graves, J.A., The Evolution of Mammalian Sex Chromosomes and the Origin of Sex-Determining Genes, Philos. Trans. R. Soc. London, B, 1995, vol. 350, no. 1333, pp. 305–311.Google Scholar
  43. 43.
    Toder, R. and Graves, J.A., CSF2RA, ANT3, and STSAre Autosomal in Marsupials: Implications for the Origin of the Pseudoautosomal Region of Mammalian Sex Chromosomes, Mamm. Genome, 1998, vol. 9, no. 5, pp. 373–376.Google Scholar
  44. 44.
    Page, D.C., Harper, M.E., Love, J., and Botstein, D., Occurrence of a Transposition from the X-Chromosome Long Arm to the Y-Chromosome Short Arm during Human Evolution, Nature, 1984, vol. 311, no. 5982, pp. 119–123.Google Scholar
  45. 45.
    Lahn, B.T. and Page, D.C., Functional Coherence of the Human Y Chromosome, Science, 1997, vol. 278, no. 5338, pp. 675–680.Google Scholar
  46. 46.
    Foster, J.W. and Graves, J.A., An SRY-Related Sequence on the Marsupial X Chromosome: Implications for the Evolution of the Mammalian Testis-Determining Gene, Proc. Natl. Acad. Sci. USA, 1994, vol. 91, no. 5, pp. 1927–1931.Google Scholar
  47. 47.
    Grutzner, F., Crollius, H.R., Lutjens, G., et al., Four-Hundred Million Years of Conserved Synteny of Human Xp and Xq Genes on Three TetraodonChromosomes, Genome Res., 2002, vol. 12, no. 9, pp. 1316–1322.Google Scholar
  48. 48.
    Lahn, B.T. and Page, D.C., Four Evolutionary Strata on the Human X Chromosome, Science, 1999, vol. 286, no. 5441, pp. 964–967.Google Scholar
  49. 49.
    Weller, P.A., Critcher, R., Goodfellow, P.N., et al., the Human Y Chromosome Homologue of XG: Transcription of a Naturally Truncated Gene, Hum. Mol. Genet., 1995, vol. 4, no. 5, pp. 859–868.Google Scholar
  50. 50.
    Palmer, S., Perry, J., Kipling, D., and Ashworth, A., A Gene Spans the Pseudoautosomal Boundary in Mice, Proc. Natl. Acad. Sci. USA, 1997, vol. 94, no. 22, pp. 12030–12035.Google Scholar
  51. 51.
    Dal Zotto, L., Quaderi, N.A., Elliott, R., et al., the Mouse Mid1Gene: Implications for the Pathogenesis of Opitz Syndrome and the Evolution of the Mammalian Pseudoautosomal Region, Hum. Mol. Genet., 1998, vol. 7, no. 3, pp. 489–499.Google Scholar
  52. 52.
    Brown, C.J., Carrel, L., and Willard, H.F., Expression of Genes from the Human Active and Inactive X Chromosomes, Am. J. Hum. Genet., 1997, vol. 60, no. 6, pp. 1333–1343.Google Scholar
  53. 53.
    Murphy, W.J., Sun, S., Chen, Z., et al., A Radiation Hybrid Map of the Cat Genome: Implications for Comparative Mapping, Genome Res., 2000, vol. 10, no. 5, pp. 691–702.Google Scholar
  54. 54.
    Everts, R.E., van Wolferen, M.E., Versteeg, S.A., et al., A Radiation Hybrid Map of the X Chromosome of the Dog (Canis familiaris), Cytogenet. Genome Res., 2002, vol. 98, no. 1, pp. 86–92.Google Scholar
  55. 55.
    Raudsepp, T., Kata, S.R., Piumi, F., et al., Conservation of Gene Order between Horse and Human X Chromosomes as Evidenced through Radiation Hybrid Mapping, Genomics, 2002, vol. 79, no. 3, pp. 451–457.Google Scholar
  56. 56.
    Perry, J., Palmer, S., Gabriel, A., and Ashworth, A., A Short Pseudoautosomal Region in Laboratory Mice, Genome Res., 2001, vol. 11, no. 11, pp. 1826–1832.Google Scholar
  57. 57.
    Ellison, J.W., Salido, E.C., and Shapiro, L.J., Genetic Mapping of the Adenine Nucleotide Translocase-2 Gene (Ant2) to the Mouse Proximal X Chromosome, Genomics, 1996, vol. 36, no. 2, pp. 369–371.Google Scholar
  58. 58.
    Salido, E.C., Li, X.M., Yen, P.H., et al., Cloning and Expression of the Mouse Pseudoautosomal Steroid Sulphatase Gene (Sts), Nat. Genet., 1996, vol. 13, no. 1, pp. 83–86.Google Scholar
  59. 59.
    Ellison, J.W., Li, X., Francke, U., and Shapiro, L.J., Rapid Evolution of Human Pseudoautosomal Genes and Their Mouse Homologs, Mamm. Genome, 1996, vol. 7, no. 1, pp. 25–30.Google Scholar
  60. 60.
    Perry, J. and Ashworth, A., Evolutionary Rate of a Gene Affected by Chromosomal Position, Curr. Biol., 1999, vol. 9, no. 17, pp. 987–989.Google Scholar
  61. 61.
    Smith, M.J. and Goodfellow, P.N., MIC2R: A Transcribed MIC2-Related Sequence Associated with a CpG Island in the Human Pseudoautosomal Region, Hum. Mol. Genet., 1994, vol. 3, no. 9, pp. 1575–1582.Google Scholar
  62. 62.
    Just, W., Rau, W., Vogel, W., et al., Absence of Sryin Species of the Vole Ellobius, Nat. Genet., 1995, vol. 11, no. 2, pp. 117–118.Google Scholar
  63. 63.
    Toder, R., Wakefield, M.J., and Graves, J.A., The Minimal Mammalian Y Chromosome-The Marsupial Y as a Model System, Cytogenet. Cell Genet., 2000, vol. 91, nos. 1-4, pp. 285–292.Google Scholar
  64. 64.
    Borodin, P.M., Sablina, O.V., Zakiyan, S.M., et al., Morphology and Meiotic Behavior of the Sec Chromosomes in Four Vole Species of the Genus Microtus, Genetika (Moscow), 1991, vol. 27, no. 6, pp. 1059–1065.Google Scholar
  65. 65.
    Yang, F., O'Brien, P., Milne, B., et al., A Complete Comparative Chromosome Map for the Dog, Red Fox, and Human and Its Integration with Canine Genetic Maps, Genomics, 1999, vol. 62, pp. 189–202.Google Scholar
  66. 66.
    Rubtsov, N.B., Rubtsova, N.V., Anopriyenko, O.V., et al., Reorganization of the X Chromosome in Voles of the Genus Microtus, Cytogenet. Genome Res., 2002, vol. 99, pp. 323–329.Google Scholar
  67. 67.
    Orlov, V.N. and Bulatova, N.Sh., Sravnitel’naya tsitogenetika i kariosistematika mlekopitayushchikh (Comparative Cytogenetics and Karyotaxonomy of Mammals), Moscow: Nauka, 1983.Google Scholar
  68. 68.
    Berend, S.A., Hale, D.W., Engstrom, M.D., and Greenbaum, I.F., Cytogenetics of Collared Lemmings (Dicrostonyx groenlandicus): I. Meiotic Behavior and Evolution of the Neo-XY Sex-Chromosome System, Cytogenet. Cell Genet., 1997, vol. 79, pp. 288–292.Google Scholar
  69. 69.
    Charchar, F.J., Svartman, M., El-Mogharbel, N., et al., Complex Events in the Evolution of the Human Pseudoautosomal Region 2 (PAR2), Genome Res., 2003, vol. 13, pp. 281–286.Google Scholar
  70. 70.
    Kvaloy, K., Galvagni, F., and Brown, W.R.A., The Sequence Organization of the Long-Arm Pseudoautosomal Region of the Human Sex Chromosomes, Hum. Mol. Genet., 1994, vol. 3, pp. 771–778.Google Scholar
  71. 71.
    Shapiro, L.J., Mohandas, T., Weiss, R., and Romeo, G., Non-Inactivation of an X-Chromosome Locus in Man, Science, 1979, vol. 204, no. 4398, pp. 1224–1226.Google Scholar
  72. 72.
    Franco, B., Guioli, S., Pragliola, A., et al., A Gene Deleted in Kallmann’s Syndrome Shares Homology with Neural Cell Adhesion and Axonal Path-Finding Molecules, Nature, 1991, vol. 353, pp. 529–536.Google Scholar
  73. 73.
    Yen, P.H., Ellison, J., Salido, E.C., et al., Isolation of a New Gene from the Distal Short Arm of the Human X Chromosome That Escapes X-Inactivation, Hum. Mol. Genet., 1992, vol. 1, no. 1, pp. 47–52.Google Scholar
  74. 74.
    Schneider-Gadicke, A., Beer-Romero, P., Brown, L.G., et al., ZFXHas a Gene Structure Similar to ZFY, the Putative Human Sex Determinant, and Escapes X Inactivation, Cell (Cambridge, Mass.), 1989, vol. 57, no. 7, pp. 1247–1258.Google Scholar
  75. 75.
    Fisher, E.M., Beer-Romero, P., Brown, L.G., et al., Homologous Ribosomal Protein Genes on the Human X and Y Chromosomes: Escape from X Inactivation and Possible Implications for Turner Syndrome, Cell (Cambridge, Mass.), 1990, vol. 63, no. 6, pp. 1205–1218.Google Scholar
  76. 76.
    Disteche, C.M., Escape from X Inactivation in Human and Mouse, Trends Genet., 1995, vol. 11, no. 1, pp. 17–22.Google Scholar
  77. 77.
    Watanabe, M., Zinn, A.R., Page, D.C., and Nishimoto, T., Functional Equivalence of Human X-and Y-Encoded Isoforms of Ribosomal Protein S4 Consistent with a Role in Turner Syndrome, Nat. Genet., 1993, vol. 4, no. 3, pp. 268–271.Google Scholar
  78. 78.
    Brown, C.J. and Willard, H.F., Noninactivation of a Selectable Human X-Linked Gene That Complements a Murine Temperature-Sensitive Cell Cycle Defect, Am. J. Hum. Genet., 1989, vol. 45, no. 4, pp. 592–598.Google Scholar
  79. 79.
    Miller, A.P. and Willard, H.F., Chromosomal Basis of X Chromosome Inactivation: Identification of a Multigene Domain in Xp11.21-p11.22 That Escapes X Inactivation, Proc. Natl. Acad. Sci. USA, 1998, vol. 95, no. 15, pp. 8709–8714.Google Scholar
  80. 80.
    Kay, G.F., Ashworth, A., Penny, G.D., et al., A Candidate Spermatogenesis Gene on the Mouse Y Chromosome Is Homologous to Ubiquitin-Activating Enzyme E1, Nature, 1991, vol. 354, no. 6353, pp. 486–489.Google Scholar
  81. 81.
    Mitchell, M.J., Woods, D.R., Tucker, P.K., et al., Homology of a Candidate Spermatogenic Gene from the Mouse Y Chromosome to the Ubiquitin-Activating Enzyme E1, Nature, 1991, vol. 354, no. 6353, pp. 483–486.Google Scholar
  82. 82.
    Xu, J., Burgoyne, P.S., and Arnold, A.P., Sex Differences in Sex Chromosome Gene Expression in Mouse Brain, Hum. Mol. Genet., 2002, vol. 11, no. 12, pp. 1409–1419.Google Scholar
  83. 83.
    Carrel, L., Cottle, A.A., Goglin, K.C., and Willard, H.F., A First-Generation X-Inactivation Profile of the Human X Chromosome, Proc. Natl. Acad. Sci. USA, 1999, vol. 96, no. 25, pp. 14440–14444.Google Scholar
  84. 84.
    Disteche, C.M., Filippova, G.N., and Tsuchiya, K.D., Escape from X Inactivation, Cytogenet. Genome Res., 2002, vol. 99, nos. 1-4, pp. 36–43.Google Scholar
  85. 85.
    Johnston, C.M., Newall, A.E., Brockdorff, N., and Nesterova, T.B., Enox, a Novel Gene That Maps 10 kb Upstream of Xistand Partially Escapes X Inactivation, Genomics, 2002, vol. 80, no. 2, pp. 236–244.Google Scholar
  86. 86.
    Disteche, C.M., Escapees on the X Chromosome, Proc. Natl. Acad. Sci. USA, 1999, vol. 7, no. 96, pp. 14180–14182.Google Scholar
  87. 87.
    Ashworth, A., Rastan, S., Lovell-Badge, R., and Kay, G., X-Chromosome Inactivation May Explain the Difference in Viability of XO Humans and Mice, Nature, 1991, vol. 351, no. 6325, pp. 406–408.Google Scholar
  88. 88.
    Zinn, A.R., Page, D.C., and Fisher, E.M., Turner Syndrome: The Case of the Missing Sex Chromosome, Trends Genet., 1993, vol. 9, no. 3, pp. 90–93.Google Scholar
  89. 89.
    Duthie, S.M., Nesterova, T.B., Formstone, E.J., et al., XistRNA Exhibits a Banded Localization on the Inactive X Chromosome and Is Excluded from Autosomal Material in cis, Hum. Mol. Genet., 1999, vol. 8, no. 2, pp. 195–204.Google Scholar
  90. 90.
    Lee, J.T. and Jaenisch, R., Long-Range CisEffects of Ectopic X-Inactivation Centers on a Mouse Autosome, Nature, 1997, vol. 386, no. 6622, pp. 275–279.Google Scholar
  91. 91.
    Disteche, C.M., Eicher, E.M., and Latt, S.A., Late Replication in an X-Autosome Translocation in the Mouse: Correlation with Genetic Inactivation and Evidence for Selective Effects during Embryogenesis, Proc. Natl. Acad. Sci. USA, 1979, vol. 76, no. 10, pp. 5234–5238.Google Scholar
  92. 92.
    Anderson, C.L. and Brown, C.J., Polymorphic X-Chromosome Inactivation of the Human TIMP1Gene, Am. J. Hum. Genet., 1999, vol. 65, no. 3, pp. 699–708.Google Scholar
  93. 93.
    Carrel, L. and Willard, H.F., Heterogeneous Gene Expression from the Inactive X Chromosome: An X-Linked Gene That Escapes X Inactivation in Some Human Cell Lines but Is Inactivated in Others, Proc. Natl. Acad. Sci. USA, 1999, vol. 96, no. 13, pp. 7364–7369.Google Scholar
  94. 94.
    Wareham, K.A., Lyon, M.F., Glenister, P.H., and Williams, E.D., Age-Related Reactivation of an X-Linked Gene, Nature, 1987, vol. 327, no. 6124, pp. 725–727.Google Scholar
  95. 95.
    Jouvenot, Y., Poirier, F., Jami, J., and Paldi, A., Biallelic Transcription of Igf2and H19in Individual Cells Suggests a Post-Transcriptional Contribution to Genomic Imprinting, Curr. Biol., 1999, vol. 9, no. 20, pp. 1199–1202.Google Scholar
  96. 96.
    Lingenfelter, P.A., Adler, D.A., Poslinski, D., et al., Escape from X Inactivation of SmcxIs Preceded by Silencing during Mouse Development, Nat. Genet., 1998, vol. 18, no. 3, pp. 212–213.Google Scholar
  97. 97.
    Jegalian, K. and Page, D.C., A Proposed Path by Which Genes Common to Mammalian X and Y Chromosomes Evolve to Become X-Inactivated, Nature, 1998, vol. 394, no. 695, pp. 776–780.Google Scholar
  98. 98.
    Huber, R., Hansen, R.S., Strazzullo, M., et al., DNA Methylation in Transcriptional Repression of Two Differentially Expressed X-Linked Genes, GPC3and SYBL1, Proc. Natl. Acad. Sci. USA, 1999, vol. 96, no. 2, pp. 616–621.Google Scholar
  99. 99.
    Anderson, C.L. and Brown, C.J., Variability of X Chromosome Inactivation: Effect on Levels of TIMP1RNA and Role of DNA Methylation, Hum. Genet., 2002, vol. 110, no. 3, pp. 271–278.Google Scholar
  100. 100.
    Migeon, B.R., Shapiro, L.J., Norum, R.A., et al., Differential Expression of Steroid Sulphatase Locus on Active and Inactive Human X Chromosome, Nature, 1982, vol. 299, no. 5886, pp. 838–840.Google Scholar
  101. 101.
    Adler, D.A., Rugarli, E.I., Lingenfelter, P.A., et al., Evidence of Evolutionary Up-Regulation of the Single Active X Chromosome in Mammals Based on Clc4Expression Levels in Mus spretusand Mus musculus , Proc. Natl. Acad. Sci. USA, 1997, vol. 94, no. 17, pp. 9244–9248.Google Scholar
  102. 102.
    Mazeyrat, S., Saut, N., Mattei, M.G., and Mitchell, M.J., RBMYEvolved on the Y Chromosome from a Ubiquitously Transcribed X-Y Identical Gene, Nat. Genet., 1999, vol. 22, no. 3, pp. 224–226.Google Scholar
  103. 103.
    Delbridge, M.L., Ma, K., Subbarao, M.N., et al., Evolution of Mammalian HNRPGand Its Relationship with the Putative Azoospermia Factor RBM, Mamm. Genome, 1998, vol. 9, no. 2, pp. 168–170.Google Scholar
  104. 104.
    Saxena, R., Brown, L.G., Hawkins, T., et al., The DAZGene Cluster on the Human Y Chromosome Arose from an Autosomal Gene That Was Transposed, Repeatedly Amplified and Pruned, Nat. Genet., 1996, vol. 14, no. 3, pp. 292–299.Google Scholar
  105. 105.
    Lahn, B.T. and Page, D.C., Retroposition of Autosomal mRNA Yielded Testis-Specific Gene Family on Human Y Chromosome, Nat. Genet., 1999, vol. 21, no. 4, pp. 429–433.Google Scholar
  106. 106.
    Rozen, S., Skaletsky, H., Marszalek, J.D., et al., Abundant Gene Conversion between Arms of Palindromes in Human and Ape Y Chromosomes, Nature, 2003, vol. 423, no. 6942, pp. 873–876.Google Scholar
  107. 107.
    Vogel, T., Dechend, F., Manz, E., et al., Organization and Expression of Bovine TSPY, Mamm. Genome, 1997, vol. 8, no. 7, pp. 491–496.Google Scholar
  108. 108.
    Muscatelli, F., Strom, T.M., Walker, A.P., et al., Mutations in the DAX-1Gene Give Rise to Both X-Linked Adrenal Hypoplasia Congenita and Hypogonadotropic Hypogonadism, Nature, 1994, vol. 372, no. 6507, pp. 672–676.Google Scholar
  109. 109.
    Skuse, D., Imprinting, the X Chromosome, and the Male Brain: Explaining Sex Differences in the Liability to Autism, Pediatric Res., 2000, vol. 47, no. 1, pp. 9–16.Google Scholar
  110. 110.
    Russel, L.B. and Mongomery, C.S., The Use of X-Autosome Translocation in Locating the X-Chromosome Inactivation Center, Genetics, 1965, vol. 52, pp. 470–471.Google Scholar
  111. 111.
    Rastan, S., Non-Random X-Chromosome Inactivation in Mouse X-Autosome Translocation Embryos: Location of the Inactivation Center, J. Embryol. Exp. Morphol., 1983, vol. 78, pp. 1–22.Google Scholar
  112. 112.
    Ohno, S., Evolution of Sex Chromosomes in Mammals, Annu. Rev. Genet., 1969, vol. 3, pp. 495–524.Google Scholar
  113. 113.
    Ohno, S., Conservation of Ancient Linkage Groups in Evolution and Some Insight into the Genetic Regulatory Mechanism of X-Inactivation, Cold Spring Harbor Symp. Quant. Biol., 1973, vol. 38, pp. 155–164.Google Scholar
  114. 114.
    Kaslow, D.C. and Migeon, B.R., DNA Methylation Stabilizes X Chromosome Inactivation in Eutherians but Not in Marsupials: Evidence for Multistep Maintenance of Mammalian X Dosage Compensation, Proc. Natl. Acad. Sci. USA, 1987, vol. 84, no. 17, pp. 6210–6214.Google Scholar
  115. 115.
    Li, E., Chromatin Modification and Epigenetic Reprogramming in Mammalian Development, Nat. Rev. Genet., 2002, vol. 3, no. 9, pp. 662–673.Google Scholar
  116. 116.
    Brockdorff, N., X-Chromosome Inactivation: Closing in on Proteins That Bind XistRNA, Trends Genet., 2002, vol. 18, no. 7, pp. 352–358.Google Scholar
  117. 117.
    Wutz, A., Rasmussen, T.P., and Jaenisch, R., Chromosomal Silencing and Localization Are Mediated by Different Domains of XistRNA, Nat. Genet., 2002, vol. 30, no. 2, pp. 167–174.Google Scholar
  118. 118.
    Avner, P. and Heard, E., X-Chromosome Inactivation: Counting, Choice and Initiation, Nat. Rev. Genet., 2001, vol. 2, no. 1, pp. 59–67.Google Scholar
  119. 119.
    Chao, W., Huynh, K.D., Spencer, R.J., et al., CTCF, a Candidate Trans-Acting Factor for X-Inactivation Choice, Science, 2002, vol. 295, no. 5553, pp. 345–347.Google Scholar
  120. 120.
    Lee, J.T., Molecular Links between X-Inactivation and Autosomal Imprinting: X-Inactivation as a Driving Force for the Evolution of Imprinting?, Curr. Biol., 2003, vol. 13, pp. 242–254.Google Scholar
  121. 121.
    Lyon, M.F., X-Chromosome Inactivation: A Repeat Hypothesis, Cytogenet. Cell Genet., 1998, vol. 80, pp. 133–137.Google Scholar
  122. 122.
    Hansen, R.S., X Inactivation-Specific Methylation of LINE-1 Elements by DNMT3B: Implications for the Lyon Repeat Hypothesis, Hum. Mol. Genet., 2003, vol. 12, no. 19, pp. 2559–2567.Google Scholar
  123. 123.
    Ganesan, S., Silver, D.P., Greenberg, R.A., et al., BRCA1 Supports XISTRNA Concentration on the Inactive X Chromosome, Cell (Cambridge, Mass.), 2002, vol. 111, no. 3, pp. 393–405.Google Scholar
  124. 124.
    Silva, J., Mak, W., Zvetkova, I., et al., Establishment of Histone H3 Methylation on the Inactive X Chromosome Requires Transient Recruitment of Eed-Enx1 Polycomb Group Complexes, Dev. Cell, 2003, vol. 4, no. 4, pp. 481–495.Google Scholar
  125. 125.
    Mager, J., Montgomery, N.D., de Villena, F.P., and Magnuson, T., Genome Imprinting Regulated by the Mouse Polycomb Group Protein Eed, Nat. Genet., 2003, vol. 33, no. 4, pp. 502–507.Google Scholar
  126. 126.
    Richards, E.J. and Elgin, S.C., Epigenetic Codes for Heterochromatin Formation and Silencing: Rounding up the Usual Suspects, Cell (Cambridge, Mass.), 2002, vol. 108, no. 4, pp. 489–500.Google Scholar
  127. 127.
    Csankovszki, G., Nagy, A., and Jaenisch, R., Synergism of XistRNA, DNA Methylation, and Histone Hypoacetylation in Maintaining X Chromosome Inactivation, J. Cell. Biol., 2001, vol. 153, no. 4, pp. 773–784.Google Scholar
  128. 128.
    Costanzi, C., Stein, P., Worrad, D.M., et al., Histone MacroH2A1 Is Concentrated in the Inactive X Chromosome of Female Preimplantation Mouse Embryos, Development (Cambridge, UK), 2000, vol. 127, no. 11, pp. 2283–2289.Google Scholar
  129. 129.
    Mermoud, J.E., Tassin, A.M., Pehrson, J.R., and Brockdorff, N., Centrosomal Association of Histone MacroH2A1.2 in Embryonic Stem Cells and Somatic Cells, Exp. Cell Res., 2001, vol. 268, no. 2, pp. 245–251.Google Scholar
  130. 130.
    Hoyer-Fender, S., Costanzi, C., and Pehrson, J.R., Histone MacroH2A1.2 Is Concentrated in the XY-Body by the Early Pachytene Stage of Spermatogenesis, Exp. Cell Res., 2000, vol. 258, no. 2, pp. 254–260.Google Scholar
  131. 131.
    Hansen, R.S., Stoger, R., Wijmenga, C., et al., Escape from Gene Silencing in ICF Syndrome: Evidence for Advanced Replication Time as a Major Determinant, Hum. Mol. Genet., 2000, vol. 9, no. 18, pp. 2575–2587.Google Scholar
  132. 132.
    Mohandas, T., Sparkes, R.S., and Shapiro, L.J., Reactivation of an Inactive Human X Chromosome: Evidence for X Inactivation by DNA Methylation, Science, 1981, vol. 211, no. 4480, pp. 393–396.Google Scholar
  133. 133.
    Tsuchiya, K.D. and Willard, H.F., Chromosomal Domains and Escape from X Inactivation: Comparative X Inactivation Analysis in Mouse and Human, Mamm. Genome, 2000, vol. 10, pp. 849–854.Google Scholar
  134. 134.
    Luoh, S.W., Jegalian, K., Lee, A., et al., CpG Islands in Human ZFXand ZFYand Mouse ZfxGenes: Sequence Similarities and Methylation Differences, Genomics, 1995, vol. 29, no. 2, pp. 353–363.Google Scholar
  135. 135.
    Hall, I.M., Shankaranarayana, G.D., Noma, K., et al., Establishment and Maintenance of a Heterochromatin Domain, Science, 2002, vol. 297, no. 5590, pp. 2232–2237.Google Scholar
  136. 136.
    Volpe, T.A., Kidner, C., Hall, I.M., et al., Regulation of Heterochromatic Silencing and Histone H3 Lysine-9 Methylation by RNAi, Science, 2002, vol. 297, no. 5588, pp. 1833–1837.Google Scholar
  137. 137.
    Maison, C., Bailly, D., Peters, A.H., et al., Higher-Order Structure in Pericentric Heterochromatin Involves a Distinct Pattern of Histone Modification and an RNA Component, Nat. Genet., 2002, vol. 30, no. 3, pp. 329–334.Google Scholar
  138. 138.
    Wutz, A., RNAs Templating Chromatin Structure for Dosage Compensation in Animals, BioEssays, 2003, vol. 25, no. 5, pp. 434–442.Google Scholar
  139. 139.
    Sharman, G.B., Late DNA Replication in the Paternally Derived X-Chromosome of Female Kangaroos, Nature, 1971, vol. 230, pp. 231–232.Google Scholar
  140. 140.
    Richardson, B.J., Czuppon, A.B., and Sharman, G.B., Inheritance of Glucose-6-Phosphate Dehydrogenase Variation in Kangaroos, Nat. New Biol., 1971, vol. 230, pp. 154–155.Google Scholar
  141. 141.
    Takagi, N. and Sasaki, M., Preferential Inactivation of the Paternally Derived X Chromosome in the Extraembryonic Membranes of the Mouse, Nature, 1975, vol. 256, pp. 640–642.Google Scholar
  142. 142.
    West, J.D., Freis, W.I., Chapman, V.M., and Papaioannou, V.E., Preferential Expression of the Maternally Derived X Chromosome in the Mouse Yolk Sac, Cell (Cambridge, Mass.), 1977, vol. 12, pp. 873–882.Google Scholar
  143. 143.
    Takagi, N., Sugawara, O., and Sasaki, M., Regional and Temporal Changes in the Pattern of X-Chromosome Replication during the Early Post-Implantation Development of the Female Mouse, Chromosoma, 1982, vol. 85, no. 2, pp. 275–286.Google Scholar
  144. 144.
    Chapman, V., Forrester, L., Sanford, J., et al., Cell Lineage-Specific under Methylation of Mouse Repetitive DNA, Nature, 1984, vol. 307, no. 5948, pp. 284–286.Google Scholar
  145. 145.
    Sado, T., Fenner, M.H., Tan, S.S., et al., X Inactivation in the Mouse Embryo Deficient for Dnmt1: Distinct Effect of Hypomethylation on Imprinted and Random X Inactivation, Dev. Biol., 2000, vol. 225, no. 2, pp. 294–303.Google Scholar
  146. 146.
    Mayer, W., Niveleau, A., Walter, J., et al., Demethylation of the Zygotic Paternal Genome, Nature, 2000, vol. 403, no. 6769, pp. 501–502.Google Scholar
  147. 147.
    Mayer, W., Smith, A., Fundele, R., and Haaf, T., Spatial Separation of Parental Genomes in Preimplantation Mouse Embryos, J. Cell Biol., 2000, vol. 148, no. 4, pp. 629–634.Google Scholar
  148. 148.
    Huynh, K.D. and Lee, J.T., Imprinted X Inactivation in Eutherians: A Model of Gametic Execution and Zygotic Relaxation, Cell Biol., 2001, vol. 13, no. 6, pp. 690–697.Google Scholar
  149. 149.
    Wu, Ch.-I. and Xu, E.Y., Sexual Antagonism and X Inactivation-The SAXI Hypothesis, Trends Genet., 2003, vol. 19, pp. 243–247.Google Scholar
  150. 150.
    Cattanach, B.M. and Beechey, C.V., Autosomal and XChromosome Imprinting, Dev. Suppl., 1990, pp. 63–72.Google Scholar
  151. 151.
    Lyon, M.F., X-Chromosome Inactivation, Curr. Biol., 1999, vol. 9, no. 7, pp. 235–237.Google Scholar
  152. 152.
    Chess, A., Simon, I., Cedar, H., and Axel, R., Allelic Inactivation Regulates Olfactory Receptor Gene Expression, Cell (Cambridge, Mass.), 1994, vol. 9, no. 78, pp. 823–834.Google Scholar
  153. 153.
    Malissen, M., Trucy, J., Jouvin-Marche, E., et al., Regulation of TCR a ?and β ?Gene Allelic Exclusion during T-Cell Development, Immunol. Today, 1992, vol. 13, no. 8, pp. 315–322.Google Scholar
  154. 154.
    Held, W., Roland, J., and Raulet, D.H., Allelic Exclusion of Ly49-Family Genes Encoding Class I MHC-Specific Receptors on NK Cells, Nature, 1995, vol. 376, no. 6538, pp. 355–358.Google Scholar
  155. 155.
    Hollander, G.A., Zuklys, S., Morel, C., et al., Monoallelic Expression of the Interleukin-2 Locus, Science, 1998, vol. 279, no. 5359, pp. 2118–2121.Google Scholar
  156. 156.
    Bix, M. and Locksley, R.M., Independent and Epigenetic Regulation of the Interleukin-4 Alleles in CD4+ T Cells, Science, 1998, vol. 281, no. 5381, pp. 1352–1354.Google Scholar
  157. 157.
    Kelly, B.L. and Locksley, R.M., Coordinate Regulation of the IL-4, IL-13, and IL-5 Cytokine Cluster in Th2 Clones Revealed by Allelic Expression Patterns, J. Immunol., 2000, vol. 165, no. 6, pp. 2982–2986.Google Scholar
  158. 158.
    Baroux, C., Spillane, C., and Grossniklaus, U., Genomic Imprinting during Seed Development, Homology Effects, Dunlap, J.C. and Wu C.-T., Eds., San Diego: Academic, 2002, pp. 165–214.Google Scholar
  159. 159.
    Reik, W. and Walter, J., Genomic Imprinting: Parental Influence on the Genome, Nat. Rev. Genet., 2001, vol. 2, no. 1, pp. 21–32.Google Scholar
  160. 160.
    Sleutels, F. and Barlow, D.P., The Origins of Genomic Imprinting in Mammals, Homology Effects, Dunlap, J.C. and Wu C.-T., Eds., San Diego: Academic, 2002, pp. 119–154.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2004

Authors and Affiliations

  • O. V. Anopriyenko
    • 1
    • 2
  • S. M. Zakian
    • 1
  1. 1.Institute of Cytology and GeneticsRussian Academy of SciencesNovosibirskRussia
  2. 2.Institute of Molecular Biology and GeneticsNational Academy of Sciences of UkraineKievUkraine; fax

Personalised recommendations