Russian Journal of Genetics

, Volume 40, Issue 1, pp 74–80 | Cite as

Identification of Hereditary Variants of Cutaneous Melanoma

  • T. P. Kazubskaya
  • V. M. Kozlova
  • V. K. Musatov
  • A. V. Mikhailovskii
  • M. A. Shabanov
  • E. I. Trofimov
  • V. Yu. Sel'chuk
  • R. F. Garkavtseva


The identification of hereditary variants of cutaneous melanoma and analysis of the role of hereditary factors and syndromes predisposing to cutaneous melanoma were carried out. The involvement of individual nevus phenotypes in the development of this disease was determined. Based on a survey of recent molecular biological data and our studies, the etiological and genetic heterogeneity of cutaneous melanoma is reported. In relatives of patients with cutaneous melanoma and persons with multiple pigmented nevi, the malignant tumors proved to be differentiated in the direction of the neural crist tissues and/or derivatives of cutaneous mesenchyma. Based on the evidence obtained, the approaches have been developed to formation of risk groups for the purpose of early diagnostics of cutaneous melanoma.


Melanoma Malignant Tumor Risk Group Biological Data Genetic Heterogeneity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Trubnikov, V.I., Korrelyatsii mezhdu rodstvennikami iz serii: genetiko-matematicheskie metody, algoritmy i programmy. Metod.razrabotki (Correlations among Relatives in a Series: Genetic Mathematical Methods, Algorithms, and Programs), Moscow: Meditsina, 1998.Google Scholar
  2. 2.
    Bergman, W., Van Voorst-Vader, P.S., and Ruiter, D.J., Dysplastic Nevi and the Risk of Melanoma: Guideline for Patient Care, Ned. Tijdschr-Geneeskd., 1997, vol. 141,no. 42, pp. 2010-2014.Google Scholar
  3. 3.
    Gar'kavtseva, R.F., Sitnikova, T.S., Kazubskaya, T.P., et al., Clinical Genetic Aspects of Cutaneous Melanoma: I. Incidence, Family Analysis, Genetic Heterogeneity, Genetika (Moscow), 1995, vol. 31,no. 11, pp. 1557-1561.Google Scholar
  4. 4.
    Riccardi, V.M., Von Recklinghausen neurofibromatosis, N. Engl. J. Med., 1981, vol. 305,no. 27, pp. 1617-1627.Google Scholar
  5. 5.
    Wiznia, R.A., Freedman, J.K., and Mancini, A., Malignant Melanoma of the Choroid in Neurofibromatosis, Am. J. Ophthalmol., 1978, vol. 86,no. 3, pp. 684-687.Google Scholar
  6. 6.
    Shimke, R., Genetika i rak cheloveka (Genetics and Human Cancer), Moscow: Meditsina, 1981.Google Scholar
  7. 7.
    Riccardi, V.M., Pathophysiology of Neurofibromatosis: IV. Dermatological Insights into Heterogeneity and Pathogenesis, J. Am. Acad. Dermatol., 1980, vol. 3,no. 2, pp. 157-166.Google Scholar
  8. 8.
    Colman, S., Williams, C., and Wallace, M., Benign Neurofibromas in Type 1 Neurofibromatosis (NF1) Show Somatic Deletions of the NF1 Gene, Nat. Genet., 1995, vol. 11,no. 1, pp. 90-92.Google Scholar
  9. 9.
    Li, Y., Bollag, G., Clark, R., et al., Somatic Mutations in the Neurofibromatosis 1 Gene in Human Tumors, Cell (Cambridge, Mass.), 1992, vol. 69,no. 2, pp. 275-281.Google Scholar
  10. 10.
    Sawada, S., Florell, S., Purandare, S.M., et al., Identification of NF1 Mutations in Both Alleles of a Dermal Neurofibroma, Nat. Genet., 1996, vol. 4,no. 1, pp. 110-112.Google Scholar
  11. 11.
    Stokkel, M.P., Kroon, B.B., Vam der Sande, J.J., and Neering, H.N., Malignant Cutaneous Melanoma Associated with Neurofibromatosis in Two Sisters from a Family with Familial Atypical Multiple Mole Melanoma Syndrome: Case Reports and Review of the Literature, Cancer, 1993, vol. 72,no. 8, pp. 2370-2375.Google Scholar
  12. 12.
    Trofatter, J.A., MacCollin, M.M., Rutter, J.L., et al., A Novel Moesin-, Ezrin-, Radixin-like Gene Is a Candidate for the Neurofibromatosis 2 Tumor Suppressor, Cell (Cambridge, Mass.), 1993, vol. 72,no. 15, pp. 791-800.Google Scholar
  13. 13.
    Kimonis, K.E., Goldstein, A.M., Pastakia, B., et al., Clinical Manifestation in 105 Persons with Nevoid Basal Cell Carcinoma Syndrome, Am. J. Med. Genet., 1997, vol. 69, pp. 299-308.Google Scholar
  14. 14.
    Johnson, R.L., Rothman, A.L., Xie, J., et al., Human Homolog of patched, a Candidate Gene for the Basal Cell Nevus Syndrome, Science, 1996, vol. 272, pp. 1668-1671.Google Scholar
  15. 15.
    Wicking, C., Shanley, S., Smyth, I., et al., Most Germ-Line Mutations in the Basal Cell Carcinoma Syndrome Lead to a Premature Termination of the PATCHED Protein, and No Genotype—Phenotype Correlation Are Evident, Am. J. Hum. Genet., 1997, vol. 60, pp. 21-26.Google Scholar
  16. 16.
    Levanat, S., Gorlin, R.J., Fallet, S., et al., A Two-Hit Model for Developmental Defects in Gorlin Syndrome, Nat. Genet., 1996, vol. 12,no. 1, pp. 85-87.Google Scholar
  17. 17.
    Herrera-Ornelas, L., Elsiah, S., Petrelli, N., and Mitettelman, A., Causes of Death in Patients with Familial Polyposis Coli (FPC), Semin. Surg. Oncol., 1987, vol. 3,no. 2, pp. 109-117.Google Scholar
  18. 18.
    Babayants, R.S. and Lonshakov, Yu.I., Rasstroistva pigmentatsii kozhi (Pigmentation Disorders of the Skin), Moscow: Meditsina, 1978.Google Scholar
  19. 19.
    Hussussian, C.J., Struewing, J.P., Goldstein, A.M., et al., Germline p16 Mutations in Familial Melanoma, Nat. Genet., 1994, vol. 8, pp. 15-21.Google Scholar
  20. 20.
    Ikeda, I., Ishizaka, Y., Tahira, T., et al., Specific Expression of the ret Protooncogene in Human Neuroblastoma Cell Lines, Oncogene, 1990, vol. 5,no. 9, pp. 1291-1296.Google Scholar
  21. 21.
    Pearse, A.G. and Polak, J.M., Endocrine Tumors of Neural Crest Origin: Neurolophomas, Apudomas and the APUD Concept, Med. Biol., 1974, vol. 52,no. 1, pp. 3-18.Google Scholar
  22. 22.
    Nakamura, T., Ishizaka, Y., Nagao, M., et al., Expression of the ret Protooncogene Product in Human Normal and Neoplastic Tissues of Neural Crest Origin, J. Pthol., 1994, vol. 172, pp. 255-260.Google Scholar
  23. 23.
    Nakamura, T., Genetic Markers and Animal Models of Neurocristopathy, Histol. Histopathol., 1995, vol. 10,no. 3, pp. 747-759.Google Scholar
  24. 24.
    Bahuau, M., Vidaud, D., Zenkins, R.B., et al., Germ-Line Deletion Involving the INK1-4 Locus in Familial Predisposition to Melanoma and Nervous System Tumors, Cancer Res., 1998, vol. 58,no. 11, pp. 2298-2303.Google Scholar
  25. 25.
    Bale, S.J., Dracopoli, N.C., Tucker, M.A., et al., Mapping the Gene for Hereditary Cutaneous Malignant Melanoma, Dysplastic Nevus, to Chromosome 1p, N. Engl. J. Med., 1989, vol. 320, pp. 1367-1372.Google Scholar
  26. 26.
    Cannon-Albright, L.A., Goldgar, D.E., Meyer, L.J., et al., Assignment of a Locus for Familial Melanoma, MLM, to Chromosome 9p13–p22, Science, 1992, vol. 258, pp. 1148-1152.Google Scholar
  27. 27.
    Kamb, A., Gruis, N.A., Weaver-Feldhaus, J., et al., A Cell Cycle Regulator Potentially Involved in Genesis of Many Tumor Types, Science, 1994, vol. 264, pp. 436-440.Google Scholar
  28. 28.
    Ranade, K., Hussussian, C.J., Sikorski, R.S., et al., Mutations Associated with Familial Melanoma Impair p16INK4 Function, Nat. Genet., 1995, vol. 10,no. 1, pp. 114-116.Google Scholar
  29. 29.
    Green, M.H., The Genetic of Hereditary Melanoma and Nevi, Cancer, 1999, vol. 86,no. 8, pp. 1644-1646.Google Scholar
  30. 30.
    Bronner, C., Baker, S., Morrison, P., et al., Mutation in the DNA Mismatch Repair Gene Homologue Hmlh1 Is Associated with Hereditary Non-Polyposis Colon Cancer, Nature, 1994, vol. 368, pp. 258-261.Google Scholar
  31. 31.
    Nicolaides, N., Papadopoulos, N., Liu, B., et al., Mutations of Two PMS Homologues in Hereditary Nonpolyposis Colon Cancer, Nature, 1994, vol. 371, pp. 75-80.Google Scholar
  32. 32.
    Vermeulen, W., de Boer, J., Citerrio, E., et al., Mammalian Nucleotide Excision Repair and Syndromes, Biochem. Soc. Trans., 1997, vol. 25,no. 1, pp. 309-315.Google Scholar
  33. 33.
    Lynch, H.T., Fusaro, R.M., Kimberling, W.J., et al., Familial Atypical Multiple Mole Melanoma (FAMMM) Syndrome: Segregation Analysis, J. Med. Genet., 1983, vol. 20, pp. 342-344.Google Scholar
  34. 34.
    Marra, G., Boland, R., and Boland, C.R., Hereditary Nonpolyposis Colorectal Cancer: The Syndrome, the Genes, and Historical Perspectives, J. Nat. Cancer Inst., 1995, vol. 87,no. 15, pp. 1114-1125.Google Scholar
  35. 35.
    Kiuru-Kuhlefelt, S. and Aittomaki, K., New LFS Identify More p53 Mutation-Positive Families Than the Classical LFS Criteria, Am. J. Hum. Genet., 2001, vol. 69,no. 4, p. 252.Google Scholar
  36. 36.
    Kousseff, B.G., The Genetics of Malignant Melanomas, Ann. Plast. Surg., 1992, vol. 28,no. 1, pp. 11-13.Google Scholar
  37. 37.
    Lynch, H.T., Smyrk, T., Kern, S., et al. Familial Pancreatic Cancer: A Review, Seminars in Oncology, 1996, vol. 23,no. 2, pp. 251-275.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2004

Authors and Affiliations

  • T. P. Kazubskaya
    • 1
  • V. M. Kozlova
    • 1
  • V. K. Musatov
    • 1
  • A. V. Mikhailovskii
    • 1
  • M. A. Shabanov
    • 1
  • E. I. Trofimov
    • 1
  • V. Yu. Sel'chuk
    • 1
  • R. F. Garkavtseva
    • 1
  1. 1.Research Institute of Clinical Oncology, Blokhin Research Center of Clinical OncologyRussian Academy of Medical SciencesMoscowRussia

Personalised recommendations