Russian Journal of Coordination Chemistry

, Volume 30, Issue 11, pp 818–824 | Cite as

Structure of Complexes Formed in the CuX2–Cu–N-Allylisoquinolinium Chloride System (X = Cl, Br)

  • Ya. E. Filinchuk
  • A. V. Pavlyuk
  • L. Z. Ciunik
  • M. G. Mys'kiv


The crystals of N-allylisoquinolinium chlorides of the compositions [C9H7N(C3H5)]2CuIICl4 (I), [C9H7N(C3H5)]CuICl2 · H2O (II), and [C9H7N(C3H5)]CuICl1.43Br0.57 · H2O (III) were prepared by alternating-current electrosynthesis. X-ray diffraction analysis (using diffractometer models DARCH1 for I, STOE for II, and KUMA/CCD for III, MoKα radiation) showed that the crystals of I are monoclinic, space group P21/n, a = 14.91(1) Å, b = 10.41(1) Å, c = 16.90(1) Å, γ = 109.73(8)°, V = 2470(8) Å3, Z = 4. The crystals of isostructural compounds II and III are triclinic, space group Pī, Z = 2; crystals II: a = 7.2446(6) Å, b = 7.4379(6) Å, c = 12.110(1) Å, α = 80.95(1)°, β = 85.55(1)°, γ = 86.60(1)°, V = 641.8(2) Å3; crystals III: a = 7.253(2) Å, b = 7.459(4) Å, c = 12.151(5) Å, α = 80.82(4)°, β = 83.73(3)°, γ = 86.81(4)°, V = 644.6(9) Å3. The structure of I is composed of CuIICl42– tetrahedra and N-allylisoquinolinium cations united by C–H···Cl hydrogen bonds in corrugated layers. The crystal structures of π-complexesII and III are built of [C9H7(C3H5)]2Cu2IX4 dimers, which form layers along the c axis due to the C–H···X hydrogen bonds. An important role in the structure formation is played by water molecules, which crosslink the organometallic layers to form a three-dimensional framework through the O–H···X contacts.


Hydrogen Radiation Chloride Physical Chemistry Crystal Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Goreshnik, E.A., Shollmeyer, D., Mys'kiv, M.G., and Pavl'uk, O.V., Z. Anorg. Allg. Chem., 2000, vol. 626, no. 4, p. 1016.Google Scholar
  2. 2.
    Goreshnik, E.A., Pavlyuk, A.V., Shollmeier, D., and Mys'kiv, M.G., Koord. Khim., 1999, vol. 25, no. 9, p. 699.Google Scholar
  3. 3.
    Goreshnik, E.A., Davydov, V.N., Pavlyuk, A.V., et al., Koord. Khim., 1999, vol. 25, no. 10, p. 784.Google Scholar
  4. 4.
    Pavlyuk, A.V., Davydov, V.N., and Mys'kiv, M.G., Koord. Khim., 2001, vol. 27, no. 12, p. 917.Google Scholar
  5. 5.
    Pavlyuk, A.V., Davydov, V.N., and Mys'kiv, M.G., Koord. Khim., 2003, vol. 29, no. 3, p. 213.Google Scholar
  6. 6.
    Mykhalichko, B.M. and Mys'kiv, M.G, Ukr. Patent UA 25450 A, Byul. Izobret., 1998, no. 6.Google Scholar
  7. 7.
    Aksel'rud, L.G., Grin', Yu.N., Zavalii, P.Yu., et al., Paket programm dlya rentgenostrukturnogo analiza CSD. Obshchee opisanie (CSD Program Package for X-Ray Diffraction. General Description), Lvov: Lvov. Gos. Univ., 1990.Google Scholar
  8. 8.
    Sheldrick, G.M., SHELXL97. Program for Refinement of Crystal Structures, Göttingen (Germany): Univ. of Göt-tingen, 1997.Google Scholar
  9. 9.
    Desiraju, G., Acc. Chem. Res., 2002, vol. 35, p. 565.Google Scholar
  10. 10.
    Comprehensive Organic Chemistry, Barton, D. and Olliss, W.D., Eds., Oxford: Pergamon Press, 1979.Google Scholar
  11. 11.
    Goreshnik, E.A., Schollmeyer, D., and Mys'kiv, M.G., Z. Anorg. Allg. Chem., 2003, vol. 629, no. 11, p. 2040.Google Scholar
  12. 12.
    Goreshnik, E.A., Schollmeyer, D., and Mys'kiv, M.G., Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 2003, vol. 59, no. 11, p. 478.Google Scholar
  13. 13.
    Khimicheskaya entsiklopediya (Chemical Encyclope-adia), Moscow: Sov. Entsikl., 1990, vol. 1, p. 142.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2004

Authors and Affiliations

  • Ya. E. Filinchuk
    • 1
  • A. V. Pavlyuk
    • 2
  • L. Z. Ciunik
    • 3
  • M. G. Mys'kiv
    • 2
  1. 1.Geneva UniversitySwitzerland
  2. 2.Department of ChemistryFranko National UniversityLvivUkraine
  3. 3.Institute of ChemistryWrozlaw UniversityPoland

Personalised recommendations