Russian Chemical Bulletin

, Volume 53, Issue 2, pp 370–375

Synthesis of (azidomethyl)phenylboronic acids

  • A. Yu. Fedorov
  • A. A. Shchepalov
  • A. V. Bol"shakov
  • A. S. Shavyrin
  • Yu. A. Kurskii
  • J.-P. Finet
  • S. V. Zelentsov
Article

Abstract

The synthesis of 2-, 3-, and 4-(azidomethyl)phenylboronic acids was carried out. The geometric and electronic structures were studied by quantum-chemical methods. The suggestion is made that there are weak intramolecular interactions between the boron atom and the nitrene nitrogen atom of the azido group.

azidomethylphenylboronic acids synthesis quantum-chemical calculations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Miyaura and A. Suzuki, Chem. Rev., 1995, 95, 2457.Google Scholar
  2. 2.
    A. Suzuki, J. Organomet. Chem., 1999, 576, 147.Google Scholar
  3. 3.
    P. Lloyd-Williams and E. Giralt, Chem. Soc. Rev., 2001, 30, 145.Google Scholar
  4. 4.
    Metal-Catalyzed Cross-Coupling Reactions, Eds. F. Diederich and P. J. Stang, VCH, Weinhein, 1998, p. 49.Google Scholar
  5. 5.
    B. Tao and D. W. Boykin, Tetrahedron Lett., 2002, 43, 4955.Google Scholar
  6. 6.
    S. Hesse and G. Kirsch, Tetrahedron Lett., 2002, 43, 1213.Google Scholar
  7. 7.
    C. H. Oh, Y. M. Lim, and C. H. You, Tetrahedron Lett., 2002, 43, 4645.Google Scholar
  8. 8.
    P. Selles and R. Lett, Tetrahedron Lett., 2002, 43, 4621.Google Scholar
  9. 9.
    J. Wu, L. Wang, R. Fathi, and Z. Yang, Tetrahedron Lett., 2002, 43, 4395.Google Scholar
  10. 10.
    B. Tao, S. C. Goel, J. Singh, and D. W. Boykin, Synthesis, 2002, 8, 1043.Google Scholar
  11. 11.
    R. J. Lewis, Sax's Dangerous Properties of Industrial Materials, Van Nostrand Reinhold, New York, 1992.Google Scholar
  12. 12.
    R. E. Lenga, The Sigma-Aldrich Library of Chemical Safety, Sigma-Aldrich, Milwaukee, 1988.Google Scholar
  13. 13.
    D. M. T. Chan, K. L. Monaco, R.-P. Wang, and M. P. Winter, Tetrahedron Lett., 1998, 39, 2933.Google Scholar
  14. 14.
    D. A. Evans, J. L. Katz, and T. R. West, Tetrahedron Lett., 1998, 39, 2937.Google Scholar
  15. 15.
    J. P. Collman, M. Zhong, L. Zeng, and S. Costanzo, J. Org. Chem., 2001, 66, 1528.Google Scholar
  16. 16.
    P. S. Herradura, K. A. Pendola, and R. K. Guy, Org. Lett., 2000, 2, 2019.Google Scholar
  17. 17.
    J.-P. Finet, A. Yu. Fedorov, S. Combes, and G. Boyer, Curr. Org. Chem., 2002, 6, 597.Google Scholar
  18. 18.
    V. V. Rostovtsev, L. G. Green, V. V. Fokin, and K. B. Sharpless, Angew. Chem., Int. Ed., 2002, 41, 2596.Google Scholar
  19. 19.
    E. F. V. Scriven and K. Turnbull, Chem. Rev., 1988, 95, 351.Google Scholar
  20. 20.
    S. Bedel, G. Ulrich, and C. Picard, Tetrahedron Lett., 2002, 43, 1697.Google Scholar
  21. 21.
    A. Yu. Fedorov, F. Carrara, and J.-P. Finet, Tetrahedron Lett., 2001, 42, 5875.Google Scholar
  22. 22.
    H. E. Gottlieb, V. Kotlyar, and A. Nudelman, J. Org. Chem., 1997, 63, 7512.Google Scholar
  23. 23.
    J. K. M. Sanders and B. K. Hunter, Modern NMR Spectroscopy. A Guide for Chemists, Oxford University Press, New York, 1997, 314 pp.Google Scholar
  24. 24.
    S. Arimori, L. I. Bosch, C. J. Ward, and T. D. James, Tetrahedron Lett., 2002, 43, 911.Google Scholar
  25. 25.
    C. J. Ward, P. Patel, and T. D. James, J. Chem. Soc., Perkin Trans. 1, 2002, 462.Google Scholar
  26. 26.
    J. N. Camara, J. T. Suri, F. E. Cappuccio, R. A. Wessling, and B. Singaram, Tetrahedron Lett., 2002, 43, 1139.Google Scholar
  27. 27.
    P. Hohenberg and W. Kohn, Phys. Rev. B, 1964, 136, 864.Google Scholar
  28. 28.
    W. Kohn and L. J. Sham, Phys. Rev. A, 1965, 140, 1133.Google Scholar
  29. 29.
    A. Pople, P. M. W. Gill, and B. G. Johnson, Chem. Phys. Lett., 1992, 199, 557.Google Scholar
  30. 30.
    D. Becke, J. Chem. Phys., 1993, 98, 5648.Google Scholar
  31. 31.
    P. J. Stephens, F. J. Devlin, C. F. Chablowski, and M. J. Frisch, J. Phys. Chem., 1994, 98, 11623.Google Scholar
  32. 32.
    R. H. Hertwig and W. Koch, Chem. Phys. Lett., 1997, 268, 345.Google Scholar
  33. 33.
    M. Dewar, E. G. Zoebish, E. F. Healy, and J. J. P. Stewart, J. Am. Chem. Soc., 1985, 107, 3902.Google Scholar
  34. 34.
    T. Murafuji, Y. Sugihara, T. Moriya, Y. Mikata, and S. Yano, N. J. Chem., 1999, 23, 683.Google Scholar
  35. 35.
    R. T. Hawkins and H. R. Snyder, J. Am. Chem. Soc., 1960, 82, 3863.Google Scholar
  36. 36.
    D. Yabroff, G. E. K. Branch, and B. Bettman, J. Am. Chem. Soc., 1934, 56, 1850.Google Scholar
  37. 37.
    H. R. Snyder, A. J. Reedy, and W. J. Lennanz, J. Am. Chem. Soc., 1958, 80, 835.Google Scholar
  38. 38.
    K. Torsell, Arkh. Kemi, 1957, 10, 507.Google Scholar
  39. 39.
    M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. J. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery, J. Comput. Chem., 1993, 14, 1347.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • A. Yu. Fedorov
    • 1
  • A. A. Shchepalov
    • 1
  • A. V. Bol"shakov
    • 1
  • A. S. Shavyrin
    • 2
  • Yu. A. Kurskii
    • 2
  • J.-P. Finet
    • 3
  • S. V. Zelentsov
    • 1
  1. 1.N. I. Lobachevsky University of NizhniiNizhnii NovgorodRussian Federation
  2. 2.G. A. Razuvaev Institute of Organometallic Chemistry of theRussian Academy of SciencesNizhnii NovgorodRussian Federation
  3. 3.Faculty of Science of St. JeromeAix-Marseille UniversityMarseilleFrance

Personalised recommendations