Russian Chemical Bulletin

, Volume 52, Issue 11, pp 2299–2327 | Cite as

Structures of large transition metal clusters

  • O. A. Belyakova
  • Yu. L. Slovokhotov
Article

Abstract

The present review surveys the results of X-ray diffraction studies of large stoichiometric transition metal clusters containing from 20 to 145 atoms in metal cores surrounded by ligand shells (72 compounds). Structures of such clusters have fragments of close packings (face-centered cubic (f.c.c.), hexagonal close (h.c.p.), and body-centered cubic (b.c.c.) packings) characteristic of crystalline bulk metals as well as mixed packings (f.c.c./h.c.p.), local close packings with pentagonal symmetry, and strongly distorted “amorphous” packings. The observed packing types, their distortions, and the relationship between the atomic structures of metal cores and the atomic radial distribution functions (RDF) are discussed. The structural principles established for the large clusters are applied to analysis of the experimental RDF for metal nanoparticles determined by X-ray diffraction and EXAFS spectroscopy.

large metal clusters X-ray diffraction analysis atomic packing atomic radial distribution nanoparticles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. R. Henry, Appl. Surf. Sci., 2000, 164, 252.Google Scholar
  2. 2.
    S. Bhaduri, Curr. Sci., 2000, 78, 1318.Google Scholar
  3. 3.
    W. Wernsdorfer, Met. Clusters Surf., 2000, 211.Google Scholar
  4. 4.
    G. Longoni, A. Ceriotti, M. Marchionna, and G. Piro, Nato ASI Ser., Ser. C, 1988, 231 (Surf. Organomet. Chem.: Mol. Approaches Surf. Catal.), 157.Google Scholar
  5. 5.
    D. Gatteschi and R. Sessoli, ACS Symp. Ser., 1996, 644 (Molecule-Based Magnetic Materials), 157.Google Scholar
  6. 6. (a)
    G. Schmid, Chem. Rev., 1992, 92, 1709; (b) Ya. Volokitin, J. Sinzig, L. J. de Jongh, G. Schmid, M. N. Vargaftik, and I. I. Moiseev, Nature, 1996, 384, 621.Google Scholar
  7. 7.
    J. Jortner, U. Even, A. Goldberg, I. Schek, T. Raz, and R. D. Levine, Surf. Rev. Lett., 1996, 3, 263.Google Scholar
  8. 8.
    B. K. Teo and H. Zhang, Polyhedron, 1990, 9, 1985.Google Scholar
  9. 9.
    D. M. P. Mingos, J. Chem. Soc., Chem. Commun., 1985, 1352.Google Scholar
  10. 10.
    Chemistry, Structure and Bonding in Zintl Phases and Ions, Ed. M. S. Kauzlarich, VCH, Weinheim, 1996.Google Scholar
  11. 11.
    A. F. Wells, Structural Inorganic Chemistry, 5th ed., Clarendon Press, Oxford, 1986.Google Scholar
  12. 12.
    S. A. Magarill, N. V. Pervukhina, S. V. Borisov, and N. A. Pal´chik, Kristallokhimiya soedinenii nizkovalentnoi rtuti [Crystal Chemistry of Low-Valent Mercury Compounds], Yanus-K, Moscow, 2001 (in Russian).Google Scholar
  13. 13.
    Yu. N. Petrov, Fizika malykh chastits [Physics of Small Particles], Nauka, Moscow, 1982 (in Russian).Google Scholar
  14. 14.
    M. R. Hoare and P. Pal, Adv. Phys., 1971, 20, 161.Google Scholar
  15. 15.
    V. V. Nauchitel and A. I. Pertsin, Mol. Phys., 1980, 40, 1341.Google Scholar
  16. 16.
    B. W. van de Waal, G. Torchet, and M.-F. de Feraudy, Chem. Phys. Lett., 2000, 331, 57.Google Scholar
  17. 17.
    T. Ikeshoji, G. Torchet, M.-F. de Feraudy, and K. Koga, Phys. Rev. E, 2001, 63, 031101.Google Scholar
  18. 18.
    S. P. Gubin, Khimiya klasterov. Osnovy klassifikatsii i stroenie [Chemistry of Clusters. Fundamentals of Classification and Structures], Nauka, Moscow, 1987 (in Russian).Google Scholar
  19. 19.
    Physics and Chemistry of Metal Cluster Compounds, Ed. L. J. de Jongh, Kluwer, Dodrecht, 1994.Google Scholar
  20. 20.
    J. H. Fendler, Nanoparticeles and Nanostructured Films, Wiley, Weinheim, 1998.Google Scholar
  21. 21.
    A. P. Alivisatos, Mat. Res. Soc. Bull., 1998, 23, 18.Google Scholar
  22. 22.
    P. Chini, J. Organometal. Chem., 1980, 200, 37.Google Scholar
  23. 23.
    P. Chini, G. Longoni, and V. G. Albano, Adv. Organometal. Chem., 1976, 14, 285.Google Scholar
  24. 24.
    V. G. Albano, G. Ciani, S. Martinengo, and S. Sironi, J. Chem. Soc., Dalton. Trans., 1979, 978.Google Scholar
  25. 25.
    M. Kappes, Chem. Rev., 1988, 88, 369.Google Scholar
  26. 26.
    M. A. Marcus, M. P. Andrews, J. Zegenhagen, A. S. Bommannavar, and P. Montano, Phys. Rev., 1990, B42, 3312.Google Scholar
  27. 27.
    K. Wade, Chem. Commun., 1971, 792.Google Scholar
  28. 28.
    K. Wade, in Transition Metal Clusters, Ed. B. F. G. Johnson, Wiley, Chichester, 1980, p. 195.Google Scholar
  29. 29.
    B. K. Teo and N. J. A. Sloane, Inorg. Chem., 1985, 24, 4545.Google Scholar
  30. 30.
    J. F. Halet, Coord. Chem. Rev., 1995, 635, 637.Google Scholar
  31. 31.
    Yu. T. Struchkov, A. S. Batsanov, and Yu. L. Slovokhotov, Sov. Sci. Rev. B. Chem., 1987, 10, 385.Google Scholar
  32. 32.
    U. Simon and G. Schön, in Handbook of Nanostructured Materials and Nanotechnology, Ed. H. S. Nalwa, Acad. Press, New York, 2000, 3, 131.Google Scholar
  33. 33.
    Chemist´s Handbook, 3d Ed., Khimiya, Leningrad, 1971, 1, p. 341 (in Russian).Google Scholar
  34. 34.
    A. L. Patterson and J. S. Kasper, in International Tables for X-ray Crystallography, Kluwer, Dodrecht, 1989, 2, p. 342.Google Scholar
  35. 35.
    Yu. L. Slovokhotov and I. S. Neretin, Dokl. Akad. Nauk SSSR, Ser. Fiz. Khim., 2002, 384, 216 [Dokl. Phys. Chem., 2002 (Engl. Transl.)].Google Scholar
  36. 36.
    A. L. Makkay, Acta Cryst., 1962, 15, 916Google Scholar
  37. 37.
    N. A. Bul´enkov and D. L. Tytik, Izv. Akad. Nauk, Ser. Khim., 2001, 1 [Russ. Chem. Bull., Int. Ed., 2001, 50, 1].Google Scholar
  38. 38.
    H. Krautscheid, D. Fenske, G. Baum, and M. Semmelmenn, Angew. Chem., Int. Ed. Engl., 1993, 32, 1303.Google Scholar
  39. 39.
    D. Fenske and T. Langtepe, Angew. Chem., Int. Ed. Engl., 2002, 41, 300.Google Scholar
  40. 40.
    A. Müller, E. Beckmann, H. Bögge, M. Schmidtmann, and A. Press, Angew. Chem., Int. Ed. Engl., 2002, 41, 1162.Google Scholar
  41. 41.
    D. Washechek E. J. Wucherer, L. F. Dahl, A. Ceriotti, G. Longoni, M. Manassero, M. Sansoni, and P. Chini, J. Am. Chem. Soc., 1979, 101, 6110.Google Scholar
  42. 42.
    L. H. Gade, B. F. G. Johnson, J. Lewis, M. McPartlin, H. R. Powell, P. R. Raithby, and W. T. Wong, J. Chem. Soc., Dalton Trans., 1994, 521.Google Scholar
  43. 43.
    M. Kawano, J. W. Bacon, C. F. Campana, B. E. Winger, J. D. Dudek, S. A. Sirchio, S. L. Scruggs, U. Geiser, and L. F. Dahl, Inorg. Chem., 2001, 40, 2554.Google Scholar
  44. 44.
    L. H. Gade, B. F. G. Johnson, J. Lewis, G. Conole, and M. McPartlin, J. Chem. Soc., Dalton Trans., 1992, 3249.Google Scholar
  45. 45.
    E. Charalambous, L. H. Gade, B. F. G. Johnson, T. Kotch, A. J. Lees, J. Lewis, and M. McPartlin, Angew. Chem., Int. Ed. Engl., 1990, 29, 1137.Google Scholar
  46. 46.
    L. H. Gade, B. F. G. Johnson, J. Lewis, M. McPartlin, and H. R. Powell, Chem. Commun., 1990, 110.Google Scholar
  47. 47.
    V. G. Albano, F. Calderoni, M. C. Iapalucci, G. Longoni, M. Monari, and P. Zanello, J. Cluster Sci., 1995, 6, 107.Google Scholar
  48. 48.
    V. G. Albano, L. Grossi, G. Longoni, M. Monari, S. Mulley, and A. Sironi, J. Am. Chem. Soc., 1992, 114, 5708.Google Scholar
  49. 49.
    K. F. Yung and W. T. Wong, Angew. Chem., Int. Ed. Engl., 2003, 42, 553.Google Scholar
  50. 50.
    S. Y. W. Hung and W. T. Wong, Chem. Commun., 1997, 2099Google Scholar
  51. 51.
    S. Martinengo, G. Ciani, and A. Sironi, J. Am. Chem. Soc., 1980, 102, 7564.Google Scholar
  52. 52.
    A. Fumagalli, S. Martinengo, G. Ciani, N. Masciocchi, and A. Sironi, Inorg. Chem., 1992, 31, 336.Google Scholar
  53. 53.
    J. L. Vidal, R. C. Schoering, and J. M. Troup, Inorg. Chem., 1981, 20, 227.Google Scholar
  54. 54.
    S. Martinengo, G. Ciani, and A. Sironi, Chem. Commun., 1992, 1405.Google Scholar
  55. 55.
    E. G. Mednikov, N. K. Eremenko, Yu. L. Slovokhotov, and Yu. T. Struchkov, J. Organomet. Chem., 1986, 301, 35.Google Scholar
  56. 56.
    E. G. Mednikov, N. K. Eremenko, Yu. L. Slovokhotov, and Yu. T. Struchkov, Zh. Vsesoyuz. Khim. Obshch. im. D. I. Mendeleeva, 1987, 32, 101 [Mendeleev Chem. J., 1987 (Engl. Transl.)].Google Scholar
  57. 57.
    C. Femoni, M. C. Iapalucci, G. Longoni, and P. H. Svensson, Chem. Commun., 2001, 1776.Google Scholar
  58. 58.
    J. D. Roth, G. J. Lewis, L. K. Safford, X. Jiang, L. F. Dahl, and M. J. Weaver, J. Am. Chem. Soc., 1992, 114, 6159.Google Scholar
  59. 59.
    B. K. Teo, H. Zhang, and X. Shi, Inorg. Chem., 1994, 33, 4086.Google Scholar
  60. 60.
    B. K. Teo, H. Zhang, and X. Shi, J. Am. Chem. Soc., 1993, 115, 8489.Google Scholar
  61. 61.
    T. G. M. M. Kappen, P. P. J. Schlebos, J. J. Bour, W. P. Bosman, J. M. M. Smits, P. T. Beurskens, and J. J. Steggerda, Inorg. Chem., 1994, 33, 754.Google Scholar
  62. 62.
    B. K. Teo and H. Zhang, Coord. Chem. Rev., 1995, 143, 611.Google Scholar
  63. 63.
    B. K. Teo and H. Zhang, Inorg. Chem., 1991, 30, 3115.Google Scholar
  64. 64.
    B. K. Teo, X. Shi, and H. Zhang, J. Cluster Sci., 1993, 4, 471.Google Scholar
  65. 65.
    B. K. Teo and H. Zhang, Angew. Chem., Int. Ed. Engl., 1992, 31, 445.Google Scholar
  66. 66.
    H. M. Chun, H. Z. Ying, C. Rong, J. F. Long, and L. H. Qin, Chinese J. Struct. Chem. (Jiegou Huaxue), 1993, 12, 334.Google Scholar
  67. 67.
    B. K. Teo, H. Zhang, and X. Shi, Inorg. Chem., 1990, 29, 2083.Google Scholar
  68. 68.
    B. K. Teo, X. Shi, and H. Zhang, J. Am. Chem. Soc., 1991, 113, 4329.Google Scholar
  69. 69.
    B. K. Teo, X. Shi, and H. Zhang, Chem. Commun., 1992, 1195.Google Scholar
  70. 70.
    M. A. Beswick, J. Lewis, P. R. Raithby, and M. C. Ramirez de Arellano, Angew. Chem., Int. Ed. Engl., 1997, 36, 2227.Google Scholar
  71. 71.
    N. T. Tran, M. Kawano, D. R. Powell, and L. F. Dahl, J. Chem. Soc., Dalton Trans., 2000, 4138.Google Scholar
  72. 72.
    A. Fumagalli, S. Martinengo, G. Bernasconi, G. Ciani, D. M. Proserpio, and A. Sironi, J. Am. Chem. Soc., 1997, 119, 1450.Google Scholar
  73. 73.
    E. G. Mednikov, S. A. Ivanov, and L. F. Dahl, Angew. Chem., Int. Ed. Engl., 2003, 42, 323.Google Scholar
  74. 74.
    C. Femoni, M. C. Iapalicci, G. Longoni, P. H. Svensson, and J. Wolowska, Angew. Chem., Int. Ed. Engl., 2000, 39, 1635.Google Scholar
  75. 75.
    N. T. Tran, M. Kawano, and L. F. Dahl, J. Chem. Soc., Dalton Trans., 2001, 19, 2731.Google Scholar
  76. 76.
    E. G. Mednikov and N. I. Kanteeva, Izv. Akad. Nauk, Ser. Khim., 1995, 167 [Russ. Chem. Bull., 1995, 44, (Engl. Transl.)].Google Scholar
  77. 77.
    A. Ceriotti, A. Fait, G. Longoni, G. Piro, L. Resconi, F. Demartin, M. Manassero, N. Masciocchi, and M. Sansoni, J. Am. Chem. Soc., 1986, 108, 5370.Google Scholar
  78. 78.
    C. Femoni, M. C. Iapalucci, G. Longoni, and P. H. Svensson, Chem. Commun., 2000, 655.Google Scholar
  79. 79.
    P. D. Mlynek, M. Kawano, M. A. Kozee, and L. F. Dahl, J. Cluster Sci., 2001, 12, 313.Google Scholar
  80. 80.
    B. K. Teo, M. Hong, H. Zhang, D. Huang, and X. Shi, Chem. Commun., 1988, 204.Google Scholar
  81. 81.
    B. K. Teo, H. Zhang, and X. Shi, J. Am. Chem. Soc., 1990, 112, 8552.Google Scholar
  82. 82.
    B. K. Teo, X. Shi, and H. Zhang, Inorg. Chem., 1993, 32, 3987.Google Scholar
  83. 83.
    B. K. Teo, M. Hong, and H. Zhang, Angew. Chem., Int. Ed. Engl., 1987, 26, 897.Google Scholar
  84. 84.
    E. G. Mednikov, N. K. Eremenko, Yu. L. Slovokhotov, and Yu. T. Struchkov, Chem. Commun., 1987, 218.Google Scholar
  85. 85.
    N. T. Tran, M. Kawano, D. R. Powell, R. K. Hayashi, C. F. Campana, and L. F. Dahl, J. Am. Chem. Soc., 1999, 121, 5945.Google Scholar
  86. 86.
    A. Ceriotti, A. Fait, G. Longoni, G. Piro, F. Demartin, M. Manassero, N. Masciocchi, and M. Sansoni, J. Am. Chem. Soc., 1986, 108, 8091.Google Scholar
  87. 87.
    B. K. Teo, X. Shi, and H. Zhang, J. Am. Chem. Soc., 1992, 114, 2743.Google Scholar
  88. 88.
    J. Zhang and L. F. Dahl, J. Chem. Soc., Dalton Trans., 2002, 7, 1269.Google Scholar
  89. 89.
    M. A. Kozee, J. Zhang, and L. F. Dahl, 219th ACS National Meeting, Book of Abstracts, 2000, INOR-403.Google Scholar
  90. 90.
    F. Demartin, C Femoni, M. C. Iapalucci, G. Longoni, and P. Macchi, Angew. Chem., Int. Ed. Engl., 1999, 38, 531.Google Scholar
  91. 91.
    J. M. Bemis and L. F. Dahl, J. Am. Chem. Soc., 1997, 119, 4545.Google Scholar
  92. 92.
    M. Kawano, J. W. Bacon, C. F. Campana, and L. F. Dahl, J. Am. Chem. Soc., 1996, 118, 7869.Google Scholar
  93. 93.
    A. Ceriotti and G. Longoni, Angew. Chem., Int. Ed. Engl., 1985, 24, 697.Google Scholar
  94. 94.
    J. D. Roth, G. J. Lewis, L. K. Safford, X. Jiang, and L. F. Dahl, J. Am. Chem. Soc., 1992, 114, 6159.Google Scholar
  95. 95.
    D. Fenske and F. Simon, Angew. Chem., Int. Ed. Engl., 1997, 36, 230.Google Scholar
  96. 96.
    N. T. Tran and L. F. Dahl, Angew. Chem., Int. Ed. Engl., 2003, 42, 3533.Google Scholar
  97. 97.
    N. T. Tran, D. R. Powell, and L. F. Dahl, Angew. Chem., Int. Ed. Engl., 2000, 39, 4121.Google Scholar
  98. 98.
    G. Schmid, R. Pfeil, R. Boese, F. Bandermann, S. Meyer, G. H. M. Calis, and J. V. A. van der Velden, Chem. Ber., 1981, 114, 3634.Google Scholar
  99. 99.
    G. Schmid, U. Giebel, and W. Huster, Inorg. Chim. Acta, 1984, 85, 97.Google Scholar
  100. 100.
    G. Schmid and W. Huster, Naturforch., 1986, 41b, 1028.Google Scholar
  101. 101.
    R. W. Broach, L. F. Dahl, G. Longoni, P. Chini, A. J. Schultz, and J. M. Williams, Adv. Chem. Ser., 1978, 167, 93.Google Scholar
  102. 102.
    A. F. Wells, Structural Inorganic Chemistry, 5th ed., Clarendon Press, Oxford, 1986.Google Scholar
  103. 103.
    S. Martinengo, G. Ciani, A. Sironi, and P. Chini, J. Am. Chem. Soc., 1978, 100, 7096.Google Scholar
  104. 104.
    C. E. Briant, B. R. C. Theobald, J. W. White, L. K. Bell, D. M. P. Mingos, and A. J. Welch, Chem. Commun., 1981, 201.Google Scholar
  105. 105.
    J. W. A. van der Velden, F. A. Vollenbroek, J. J. Bour, P. T. Beurskens, J. M. M. Smits, and W. P. Bosman, Rec. Trav. Chim. Pays-Bas (Rec. J. R. Neth. Chem. Soc.), 1981, 100, 148.Google Scholar
  106. 106.
    M. Laupp and J. Strahle, Angew. Chem., Int. Ed., 1994, 33, 207.Google Scholar
  107. 107.
    M. Laupp and J. Strahle, Z. Naturforsch., B, 1995, 50, 1369.Google Scholar
  108. 108.
    R. C. B. Copley and D. M. P. Mingos, J. Chem. Soc., Dalton Trans., 1996, 491.Google Scholar
  109. 109.
    R. C. B. Copley and D. M. P. Mingos, J. Chem. Soc., Dalton Trans., 1992, 1755.Google Scholar
  110. 110.
    E. G. Mednikov, Yu. L. Slovokhotov, and Yu. T. Struchkov, Metalloorg. Khim., 1991, 4, 123 [Organomet. Chem. USSR, 1991, 4 (Engl. Transl.)].Google Scholar
  111. 111.
    S. S. Kurasov, N. K. Eremenko, Yu. L. Slovokhotov, and Yu. T. Struchkov, J. Organomet. Chem., 1989, 361, 405.Google Scholar
  112. 112.
    V. G. Albano, P. Chini, S. Martinengo, M. Sansoni, and D. Strumolo, J. Chem. Soc., Dalton Trans., 1976, 970.Google Scholar
  113. 113.
    D. Levine and P. J. Steinhardt, Phys. Rev. B, 1986, 34, 596.Google Scholar
  114. 114.
    C. Janot, Quasicrystals. A Primer, 2nd ed., Clarendon, Oxford, 1995.Google Scholar
  115. 115.
    Physics of Simple Liquids, Eds. H. N. V. Temperley, J. S. Rowlinson, and G. S. Rushbrooke, North-Holland, Amsterdam, 1968.Google Scholar
  116. 116.
    Yu. L. Slovokhotov and Yu. T. Struchkov, Usp. Khim., 1985, 54, 556 [Russ. Chem. Rev., 1985, 54 (Engl. Transl.)].Google Scholar
  117. 117.
    H. M. Lee, M. M. Olmstead, T. Suetsuna, H. Shimotani, N. Dragoe, R. J. Cross, K. Kitazawa, and A. L. Balch, Chem. Commun., 2002, 1352.Google Scholar
  118. 118.
    M. M. Olmstead, A. de Bettencourt-Dias, J. C. Duchamp, S. Stevenson, H. C. Dorn, and A. L. Balch, J. Am. Chem. Soc., 2000, 122, 12220.Google Scholar
  119. 119.
    P. J. M. W. L. Birker, J. Reedijk, and G. O. Verschoor, Inorg. Chem., 1981, 20, 2877.Google Scholar
  120. 120.
    Rentgenospektral´nyi metod izucheniya struktury amorfnykh tel. EXAFS-spektroskopiya [X-ray Spectral Method for Investigation of the Structure of Amorphous Solids. EXAFS Spectroscopy], Ed. G. M. Zhidomirov, Nauka, Novosibirsk, 1988 (in Russian).Google Scholar
  121. 121.
    E. M. Moroz, Usp. Khim., 1991, 61, 356 [Russ. Chem. Rev., 1991, 61 (Engl. Transl.)].Google Scholar
  122. 122.
    Clusters and Colloids, from Theory to Applications, Ed. G. Schmid, VCH, Weinheim, 1994.Google Scholar
  123. 123.
    L. G. de Jongh, Applied Organometallic Chemistry, 1998, 12, 393.Google Scholar
  124. 124.
    Strukturnye issledovaniya kristallov (Ser. Problemy sovremennoi kristallokhimii) [Structural Studies of Crystals (Ser. Problems of Modern Crystallography)], Ed. V. I. Simonov, Nauka, Fizmatlit, Moscow, 1996 (in Russian).Google Scholar
  125. 125.
    Yu. L. Slovokhotov, in Solid State Organometallic Chemistry: Methods and Applications, Eds. M. Gielen, R. Willem, and B. Wrackmeyer, Wiley, Chichester, 1999, p. 113.Google Scholar
  126. 126.
    O. A. Belyakova, Y. V. Zubavichus, and Yu. L. Slovokhotov, Nucl. Instr. Meth. Phys. Res. A, 2000, 448, 302.Google Scholar
  127. 127.
    M. N. Vargaftik, V. P. Zagorodnikov, I. P. Stolyarov, I. I. Moiseev, V. I. Likholobov, D. I. Kochubey, A. L. Chuvilin, V. I. Zaikowsky, K. L. Zamaraev, and G. I. Timofeeva, Chem. Commun., 1985, 937.Google Scholar
  128. 128. (a)
    M. N. Vargaftik, I. I. Moiseev, D. I. Kochubey, and K. L. Zamaraev, Faraday Discuss., 1991, 92, 13; (b) I. I. Moiseev and M. N. Vargaftik, New J. Chem., 1998, 1217.Google Scholar
  129. 129.
    B. N. Novgorodov, D. I. Kochubey, and M. N. Vargaftik, Nucl. Instr. Meth. Phys. Res. A, 1998, 405, 351.Google Scholar
  130. 130.
    G. Schmid, B. Morun, and J.-O. Malm, Angew. Chem., Int Engl. Ed., 1989, 28, 778.Google Scholar
  131. 131.
    G. Schmid, M. Harms, J.-O. Malm, J.-O. Bovin, J. van Ruitenbeck, H. W. Zandbergen, and W. T. Fu, J. Am. Chem. Soc., 1993, 115, 2046.Google Scholar
  132. 132.
    O. A. Belyakova, E. G. Mednikov, P. V. Petrovskii, Yu. L. Slovokhotov, I. Kubozono, and S. Kashino, Tez. dokl., XIV Ross. konf. po ispol´zovaniyu sinkhrotronnogo izlucheniya (SI-2002) [Abstrs. of Papers, XIV Russian Conf. on Use of Synchrotron Radiation (SR-2002)], Novosibirsk, 2002, p. 46 (in Russian).Google Scholar
  133. 133.
    V. V. Kriventsov, B. N. Novgorodov, and D. I. Kochubey, Nucl. Instr. Meth. Phys. Res. A, 1998, 405, 382.Google Scholar
  134. 134.
    O. A. Belyakova, Y. Kubozono, S. Kashino, and Yu. L. Slovokhotov, Physica Scripta, 2003, in press.Google Scholar
  135. 135.
    A. N. Shmakov, E. M. Moroz, and A. L. Chuvilin, Nucl. Instr. Meth. Phys. Res. A, 1998, 405, 470.Google Scholar
  136. 136.
    T. G. Schaaff, M. Shafigullin, J. T. Khoury, I. Vezmar, and R. L. Wetten, J. Phys. Chem., 2001, 105, 8785.Google Scholar
  137. 137.
    I. I. Moiseev and M. N. Vargaftik, in Catalysis by Di-and Polynuclear Metal Cluster Complexes, Eds. R. D. Adams and F. A. Cotton, Wiley-VCH, New York, 1998, p. 395.Google Scholar
  138. 138.
    L. N. Lewis, Chem. Rev., 1993, 64, 1449.Google Scholar
  139. 139.
    T. Fujimoto, A. Fukuoka, S. Iijima, and M. Ichikawa, J. Phys. Chem., 1993, 97, 279.Google Scholar
  140. 140.
    H. Boneman and B. Korall, Angew. Chem., Int. Ed. Engl., 1992, 31, 1490.Google Scholar
  141. 141.
    R. Franke, J. Rothe, R. Becker, J. Pollmann, J. Hormes, H. Bönnemann, and R. Koppler, Adv. Mater., 1988, 10, 126.Google Scholar
  142. 142.
    W. Vogel, P. Britz, H. Bönnemann, J. Rothe, and J. Hornes, J. Phys. Chem., 1997, 101, 11029.Google Scholar
  143. 143.
    Active Metals: Preparation, Characterisation, Applications, Ed. A. Fürstner, VCH, Weinheim, 1996.Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • O. A. Belyakova
    • 1
  • Yu. L. Slovokhotov
    • 1
  1. 1.A. N. Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussian Federation

Personalised recommendations