Russian Journal of Bioorganic Chemistry

, Volume 30, Issue 5, pp 421–430 | Cite as

Correlation of Local Changes in the Temperature-Dependent Conformational Flexibility of Thioredoxins with Their Thermostability

  • A. A. Polyansky
  • Yu. A. Kosinsky
  • R. G. Efremov


For the development of a method capable of predicting single point mutations substantially affecting protein thermostability, we studied the effect of the E85R and R82E mutations on the thermostability of thioredoxins from Escherichia coli (Trx) andBacillus acidocaldarius (BacTrx), respectively. The basic method of investigation was the molecular dynamics simulation of 3D protein models in an explicit solvent at different temperatures (300 and 373 K). Some thermolabile regions in Trx, BacTrx, and their mutants were revealed by analyzing the temperature effect on the molecular dynamics of the protein molecule. The effect of single point mutations on the temperature changes of the protein conformation flexibility in several thermolabile regions was found. The results of the simulations are in accord with experimental data indicating that the mutation E85R increases Trx thermostability, whereas the mutation R82E decreases BacTrx thermostability. The thermostability of these proteins was revealed to depend on ionic interactions between the thermolabile regions. The single point mutations change the parameters of these interactions and make them more favorable in the E85R-Trx mutant and less favorable in the R82E-BacTrx mutant.

ionic interactions molecular dynamics simulation protein flexibility protein thermostability single point mutations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lehmann, M. and Wyss, M., Curr. Opin. Biotech., 2001, vol. 12, pp. 371–375.PubMedGoogle Scholar
  2. 2.
    Li, B., Alonso, D.O.V., and Dagget, V., Structure, 2002, vol. 10, pp. 989–998.PubMedGoogle Scholar
  3. 3.
    Pikkemaat, M.G, Linssen, A.B.M., Berendsen, H.J.C., and Janssen, D.B., Protein Eng., 2002, vol. 15, pp. 185–192.PubMedGoogle Scholar
  4. 4.
    Liu, H.L. and Wang, W.C., Protein Eng., 2003, vol. 16, pp. 19–25.PubMedGoogle Scholar
  5. 5.
    Merz, A., Knochel, T., Jansonius, J.N., and Kirschner, K., J. Mol. Biol., 1999, vol. 288, pp. 753–763.PubMedGoogle Scholar
  6. 6.
    Perl, D., Mueller, U., Heinemann, U., and Schmid, F.X., Nat. Struct. Biol., 2000, vol. 7, pp. 380–383.PubMedGoogle Scholar
  7. 7.
    Vetriani, C., Maeder, D.L., Tolliday, N., Yip, K.S.-P., Stillman T.J., Britton K.L., Rice D.W., Klump H.H., and Robb F.T, Proc. Natl. Acad. Sci. USA, 1998, vol. 95, pp. 12300–12305.PubMedGoogle Scholar
  8. 8.
    Bogin, O., Levin, I., Hachaman, Y., Tel-Or, S., Peretz, M., Frolow, F., and Burstein, Y., Protein Sci., 2002, vol. 11, pp. 2561–2574.PubMedGoogle Scholar
  9. 9.
    Christodoulou, E., Rypniewski, W.R., and Vorgias, C.R., Extremophiles, 2003, vol. 7, pp. 111–122.PubMedGoogle Scholar
  10. 10.
    Kumar, S. and Nussinov, R., Cell Mol. Life Sci., 2001, vol. 58, pp. 1216–1233.PubMedGoogle Scholar
  11. 11.
    Sanchez-Ruiz, J.M and Makhatadze, G.I., Trends Biochem. Sci., 2001, vol. 19, pp. 132–135.Google Scholar
  12. 12.
    Jaenicke, R., Biochimiya (Moscow), 1998, vol. 63, pp. 312–321.Google Scholar
  13. 13.
    de Bakker, P.I., Hundnberer, P.H., and McCammon, J.A., J. Mol. Biol., 1999, vol. 285, pp. 1811–1830.PubMedGoogle Scholar
  14. 14.
    Cavagnero, S., Debe, D.A., Zhou, Z.H., Adams, M.W., and Chan, S.I., Biochemistry, 1998, vol. 37, pp. 3369–3376.PubMedGoogle Scholar
  15. 15.
    Vielle, C. and Zeikus, G.J., Microbiol. Mol. Biol. Rev., 2001, vol. 65, pp. 1–43.CrossRefGoogle Scholar
  16. 16.
    Mozo-Villarias, A., Cedano, J., and Querol, E., Protein Eng., 2003, vol. 16, pp. 279–286.PubMedGoogle Scholar
  17. 17.
    Tehei, M., Maderh, D., Pfister, C., and Zaccai, G., Proc. Natl. Acad. Sci. USA, 2001, vol. 98, pp. 14 356–14 361.Google Scholar
  18. 18.
    Shuler, B., Kremer, W., Kalbitzer, H.R, and Jaenicke, R., Biochemistry, 2002, vol. 41, pp. 11670–11680.PubMedGoogle Scholar
  19. 19.
    Hernandez, G., Jenney, F.E.,Jr., Adams, M.W.W., and LeMaster, D.M., Proc. Natl. Acad. Sci. USA, 2000, vol. 97, pp. 3166–3170.PubMedGoogle Scholar
  20. 20.
    Grottesi, A., Ceruso, M.A., Colosimo, A., and Di Nola, A., Proteins, 2002, vol. 46, pp. 287–294.PubMedGoogle Scholar
  21. 21.
    Wintrode, P.L., Zhang, D., Vaidehi, N., Arnold, F.H., and Goddard, III W.A., J. Mol. Biol., 2003, vol. 327, pp. 745–757.PubMedGoogle Scholar
  22. 22.
    Kinjo, A.R. and Nishikawa, K., Eur. Biophys. J., 2001, vol. 30, pp. 378–384.PubMedGoogle Scholar
  23. 23.
    Jaenicke, R., Proc. Natl. Acad. Sci. USA, 2000, vol. 97, pp. 2962–2964.PubMedGoogle Scholar
  24. 24.
    Sham, Y.Y., Ma, B., Tsai, C.-J., and Nussinov, R., Proteins, 2002, vol. 46, pp. 308–320.PubMedGoogle Scholar
  25. 25.
    Lazaridis, T., Lee, I., and Karplus, M., Protein Sci., 1997, vol. 6, pp. 2589–2605.PubMedGoogle Scholar
  26. 26.
    Karplus, M. and McCammon, J.A., Nat. Struct. Biol., 2002, vol. 9, pp. 646–652.PubMedGoogle Scholar
  27. 27.
    Pedone, E., Saviano, M., Rossi, M., and Bartolucci, S., Protein Eng., 2001, vol. 14, pp. 255–260.PubMedGoogle Scholar
  28. 28.
    Pedone, E., Cannio, R., Saviano, M., Rossi, M., and Bartolucci, S., Biochem. J., 1999, vol. 339, pp. 309–317.PubMedGoogle Scholar
  29. 29.
    Katti, S.K., LeMaster, D.M., and Eklund, H., J. Mol. Biol., 1990, vol. 212, pp. 167–184.PubMedGoogle Scholar
  30. 30.
    Nicastro, G., de Chiara, C., Pedone, E., Rossi, M., and Bartolucci, S., Eur. J. Biochem., 2000, vol. 267, pp. 403–413.PubMedGoogle Scholar
  31. 31.
    Jeng, M.F, Campbell, A.P, Begley, T., Holmgren, A., Case, D.A., Wright, P.E., and Dyson, H.J., Structure, 1994, vol. 2, pp. 853–868.PubMedGoogle Scholar
  32. 32.
    Lindahl, E., Hess, B., and van der Spoel, D., J. Mol. Mod., 2001, vol. 7, pp. 306–317.Google Scholar
  33. 33.
    Walser, R.P.S, Huninberg, P.H., Tironi, I.G., Mark, A.E., Billeter, S.R, Fennen, J., Torda, A.E., Huber, T., Kruger, P., and van Gunsteren, W.F., J. Phys. Chem., 1999, vol. 103, pp. 3596–3607.Google Scholar
  34. 34.
    Walser, R., Mark, A.E., and van Gunsteren, W.F., Biophys. J., 2000, vol. 78, pp. 2752–2760.PubMedGoogle Scholar
  35. 35.
    Gsponer, J., Ferrara, P., and Caflish, A., J. Mol. Graph. Model., 2001, vol. 20, pp. 169–182.PubMedGoogle Scholar
  36. 36.
    Ceruso, M.A., Grottesi, A., and Di Nola, A., Proteins, 2003, vol. 50, pp. 222–229.PubMedGoogle Scholar
  37. 37.
    Koradi, R., Billeter, M., and Wuthrich, K., J. Mol. Graphics, 1996, vol. 14, pp. 51–55.Google Scholar
  38. 38.
    Kabsch, W. and Sander, C., Biopolymers, 1983, vol. 22, pp. 2577–2637.PubMedGoogle Scholar
  39. 39.
    Guex, N. and Peitsch, M.C., Electrophoresis, 1997, vol. 18, pp. 2714–2723.PubMedGoogle Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2004

Authors and Affiliations

  • A. A. Polyansky
    • 1
  • Yu. A. Kosinsky
    • 1
  • R. G. Efremov
    • 1
  1. 1.Shemyakin–Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesRussia

Personalised recommendations