Reviews in Fish Biology and Fisheries

, Volume 13, Issue 3, pp 217–235 | Cite as

Reconstructing migratory patterns of fish based on environmental influences on otolith chemistry

  • Travis S. Elsdon
  • Bronwyn M. Gillanders


The analysis of elements in calcifiedstructures of fish (e.g., otoliths) todiscriminate among fish stocks and determineconnectivity between populations is becomingwidespread in fisheries research. Recently, theconcentrations of elements in otoliths arebeing analysed on finer scales that allow thedetermination of a continuous record of otolithchemistry over a fish's entire life history.These elemental concentrations can potentiallybe used to reconstruct migration patterns,based upon the influence that water chemistry,temperature, and salinity have on otolithchemistry. In doing so, assumptions are madeabout how environmental and biological factorsinfluence the concentration of elements in fishotoliths. However, there have been fewexperiments that have tested crucialassumptions regarding what influences elementaluptake and incorporation into fish otoliths.Specifically, knowledge regarding interactionsamong environmental variables, such as theambient concentration of elements in water,temperature, and salinity, and how they mayaffect otolith chemistry, is limited.Similarly, our understanding of the rate atwhich elements are incorporated into otolithsand the implications this may have forinterpretations is lacking. This reviewdiscusses methods of determining movement offish, the development of otolith research, andsome physiological aspects of otoliths (e.g.,pathways of elemental uptake). The types ofanalysis techniques that will lead to reliableand accurate migratory reconstructions areoutlined. The effects that have on otolith chemistry arereviewed with the specific aim of highlightingareas lacking environmentalvariables in experimental data. Theinfluences of the rate of elementalincorporation and ontogeny on otolith chemistryare also addressed. Finally, future researchdirections are suggested that will fill thegaps in our current knowledge of otolithchemistry. Hypotheses that need to be tested inorder to reconstruct the migratory histories offish are outlined, in a bid to clarify thedirection that research should take beforecomplex reconstructions are attempted.

environmental histories elements fisheries otoliths stock assessment 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Åkesson, S. (2002) Tracking fish movements in the ocean. Trends Ecol.Evol. 17, 56–57.Google Scholar
  2. Arai, T., Ikemoto, T., Kunito, T., Tanabe, S. and Miyazaki, N. (2002) Otolith microchemistry of the conger eel, Conger myriaster. J.Mar.Biol.Ass.U.K. 82, 303–305.Google Scholar
  3. Bath, G. E., Thorrold, S. R., Jones, C. M., Campana, S. E., McLaren, J. W. and Lam, J. W. H. (2000) Strontium and barium uptake in aragonitic otoliths of marine fish. Geochim.Cosmochim.Acta 64, 1705–1714.Google Scholar
  4. Behrens Yamada, S. and Mulligan, T. J. (1987) Marking nonfeeding salmonid fry with dissolved strontium. Can.J.Fish.Aquat.Sci. 44, 1502–1506.Google Scholar
  5. Beltran, R., Champigneulle, A. and Vincent, G. (1995) Mass-marking of bone tissue of Coregonus lavaretus L. and its poten-tial application to monitoring the spatio-temporal distribution of larvae, fry and juveniles of lacustrine fishes. Hydrobiologia 301, 399–407.Google Scholar
  6. Block, B. A., Dewar, H., Blackwell, S. B., Williams, T. D., Prince, E. D., Farwell, C. J., Boustany, A., Teo, S. L. H., Seitz, A., Walli, A. and Fudge, D. (2001) Migratory movements, depth preference, and thermal biology of Atlantic bluefin tuna. Science 293, 1310–1314.Google Scholar
  7. Borelli, G., Mayer-Gostan, N., De Pontual, H., Boeuf, G. and Payan, P. (2001) Biochemical relationships between endolymph and otolith matrix in the trout (Oncorhynchus mykiss) and turbot (Psetta maxima). Calcif.Tissue Int. 69, 356–364.Google Scholar
  8. Brown, P. and Harris, J. H. (1995) Strontium batch-marking of golden perch (Macquaria ambigua Richardson) and trout cod (Maccullochella macquariensis Cuvier). In: Secor, D. H., Dean, J. M. and Campana, S. E. (eds.), Recent Developments in Fish Otolith Research. University of South Carolina Press, Columbia, pp. 693–701.Google Scholar
  9. Bruland, K. W. (1983) Trace elements in sea-water. Chem.Oceanogr. 8, 157–220.Google Scholar
  10. Campana, S. E. (1999) Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Mar.Ecol.Prog.Ser. 188, 263–297.Google Scholar
  11. Campana, S. E. and Thorrold, S. R. (2001) Otoliths, increments, and elements: keys to a comprehensive understanding of fish populations? Can.J.Fish.Aquat.Sci. 58, 30–38.Google Scholar
  12. Campana, S. E., Thorrold, S. R., Jones, C. M., Gunther, D., Tubrett, M., Longerich, H., Jackson, S., Halden, N. M., Kalish, J. M., Piccoli, P., Depontual, H., Troadec, H., Panfili, J., Secor, D. H., Severin, K. P., Sie, S. H., Thresher, R., Teesdale, W. J. and Campbell, J. L. (1997) Comparison of accuracy, precision, and sensitivity in elemental assays of fish otoliths using the electron microprobe, proton-induced x-ray emission, and laser ablation inductively coupled plasma mass spectrometry. Can.J.Fish.Aquat.Sci. 54, 2068–2079.Google Scholar
  13. Campana, S. E., Chouinard, G. A., Hanson, J. M., Frechét, A. and Brattey, J. (2000) Otolith elemental fingerprints as biological tracers of fish stocks. Fish.Res. 46, 343–357.Google Scholar
  14. Chesney, E. J., McKee, B. M., Blanchard, T. and Chan, L. H. (1998) Chemistry of otoliths from juvenile menhaden Brevoortia patronus: evaluating strontium, strontium: calcium and strontium isotope ratios as environmental indicators. Mar.Ecol.Prog.Ser. 171, 261–273.Google Scholar
  15. Comeau, L. A., Campana, S. E. and Castonguay, M. (2002) Auto-mated monitoring of a large-scale cod (Gadus morhua) migration in the open sea. Can.J.Fish.Aquat.Sci. 59, 1845–1850.Google Scholar
  16. Coutant, C. C. and Chen, C. H. (1993) Strontium microstructure in scales of freshwater and estuarine striped bass Morone saxat-ilis detected by laser ablation mass spectrometry. Can.J.Fish.Aquat.Sci. 50, 1318–1323.Google Scholar
  17. Dávila, P. M., Figueroa, D. and Müller, E. (2002) Freshwater input into the coastal ocean and its relation with the salinity distribution off austral Chile (35–55°S). Cont.Shelf Res. 22, 521–534.Google Scholar
  18. Dorf, B. A. and Powell, C. J. (1997) Distribution, abundance, and habitat characteristics of juvenile tautog (Tautoga onitis, Family Labridae) in Narragansett Bay, Rhode Island, 1988–1992. Estuaries 20, 589–600.Google Scholar
  19. Dove, S. G. and Kingsford, M. J. (1998) Use of otoliths and eye lenses for measuring trace-metal incorporation in fishes – a biogeographic study. Mar.Biol. 130, 377–387.Google Scholar
  20. Edmonds, J. S., Steckis, R. A., Moran, M. J., Caputi, N. and Morita, M. (1999) Stock delineation of pink snapper and tailor from Western Australia by analysis of stable isotope and stron-tium/ calcium ratios in otolith carbonate. J.Fish Biol. 55, 243–259.Google Scholar
  21. Elsdon, T. S. and Gillanders, B. M. (2002) Interactive effects of temperature and salinity on otolith chemistry: challenges for determining environmental histories of fish. Can.J.Fish.Aquat.Sci. 59, 1796–1808.Google Scholar
  22. Elsdon, T. S. and Gillanders, B. M. (2003) Relationship between water and otolith elemental concentrations in juvenile fish, Acanthopagrus butcheri. Mar.Ecol.Prog.Ser 260, 263–272.Google Scholar
  23. Ennevor, B. C. and Beames, R. M. (1993) Use of lanthanide elements to mass mark juvenile salmonids. Can.J.Fish.Aquat.Sci. 50, 1039–1044.Google Scholar
  24. Farrell, J. and Campana, S. E. (1996) Regulation of calcium and strontium deposition on the otoliths of juvenile tilapia, Oreo-chromis niloticus. Comp.Biochem.Physiol. 115, 103–109.Google Scholar
  25. Ferris-Pagès, C., Boisson, F., Allemand, D. and Tambutté, E. (2002) Kinetics of strontium uptake in the scleractinian coral Stylophora pistillata. Mar.Ecol.Prog.Ser. 245, 93–100.Google Scholar
  26. Fowler, A. J., Campana, S. E., Jones, C. M. and Thorrold, S. R. (1995a) Experimental assessment of the effect of temperature and salinity on elemental composition of otoliths using solution-based ICPMS. Can.J.Fish.Aquat.Sci. 52, 1421–1430.Google Scholar
  27. Fowler, A. J., Campana, S. E., Jones, C. M. and Thorrold, S. R. (1995b) Experimental assessment of the effect of temperature and salinity on elemental composition of otoliths using laser ablation ICPMS. Can.J.Fish.Aquat.Sci. 52, 1431–1441.Google Scholar
  28. Gauldie, R. W., West, I. F. and Coote, G. E. (1995) Evaluating otolith age estimates for Hoplostethus atlanticus by comparing patterns of checks, cycles in microincrement width, and cycles in strontium and calcium composition. Bull.Mar.Sci. 56, 76–102.Google Scholar
  29. Gemperline, P. J., Rulifison, R. A. and Paramore, L. (2002) Multi-way analysis of trace elements in fish otoliths to track migratory patterns. Chemometrics Intell.Lab.Systems. 60, 135–146.Google Scholar
  30. Gillanders, B. M. (2001) Trace metals in four structures of fish and their use for estimates of stock structure. Fish.Bull. 99, 410–419.Google Scholar
  31. Gillanders, B. M. and Kingsford, M. J. (2000) Elemental fingerprints of otoliths of fish may distinguish estuarine ‘nursery’ habitats. Mar.Ecol.Prog.Ser. 201, 273–286.Google Scholar
  32. Gillanders, B. M., Able, K. W., Brown, J. A., Eggleston, D. B. and Sheridan, P. F. (2003) Evidence of connectivity between. 234 juvenile and adult habitats for mobile marine fauna: an important component of nurseries. Mar.Ecol.Prog.Ser. 247, 281–295.Google Scholar
  33. Hansen, L. P. and Jacobsen, J. A. (2003) Origin and migration of wild and escaped farmed Atlantic salmon, Salmo salar L., in oceanic areas north of the Faroe Islands. ICES J.Mar.Sci. 60, 110–119.Google Scholar
  34. Hoff, G. R. and Fuiman, L. A. (1993) Morphometry and composi-tion of red drum otoliths: changes associated with temperature, somatic growth rate, and age. Comp.Biochem.Physiol.A. 106, 209–219.Google Scholar
  35. Hoff, G. R. and Fuiman, L. A. (1995) Environmentally induced vari-ation in elemental composition of red drum (Sciaenops ocellatus) otoliths. Bull.Mar.Sci. 56, 578–591.Google Scholar
  36. Jones, C. M. (2000) Fitting growth curves to retrospective size-at-age data. Fish.Res. 46, 123–129.Google Scholar
  37. Jones, G. P. (1991) Postrecruitment processes in the ecology of coral reef fish populations: a multifactorial perspective. In: Sale, P. F. (ed.) The Ecology of Fishes on Coral Reefs. Academic Press, San Diego, pp. 294–328.Google Scholar
  38. Ingram, B. L. and Sloan, D. (1992) Strontium isotopic composition of estuarine sediments as paleosalinity-paleoclimate indicator. Science 255, 68–72.Google Scholar
  39. Kafemann, R., Adlerstein, S. and Neukamm, R. (2000) Variation in otolith strontium and calcium ratios as an indicator of life-history strategies of freshwater fish species within a brackish water system. Fish.Res. 46, 313–325.Google Scholar
  40. Kalish, J. M. (1989) Otolith microchemistry: validation of the effects of physiology, age and environment on otolith composition. J.Exp.Mar.Biol.Ecol. 132, 151–178.Google Scholar
  41. Katayama, S., Radtke, R. L., Omori, M. and Shafer, D. J. (2000) Coexistence of anadromous and resident life history styles of pond smelt, Hypomesus nipponensis, in Lake Ogawara, Japan, as determined by analyses of otolith structure and strontium: calcium ratios. Environ.Biol.Fish. 58, 195–201.Google Scholar
  42. Kawakami, Y., Mochioka, N., Morishita, K., Tajima, T., Nakagawa, H., Toh, H. and Nakazono, A. (1998) Factors influencing otolith strontium/calcium ratios in Anguilla japonica elvers. Environ.Biol.Fish. 52, 299–303.Google Scholar
  43. Markwitz, A., Grambole, D., Herrmann, F., Trompetter, W. J., Dioses, T. and Gauldie, R. W. (2000) Reliable micro-measurement of strontium is the key to cracking the life-history code in the fish otolith. Nucl.Instrum.Methods Phys.Res.Sect.B-Beam Interact.Mater.Atoms. 168, 109–116.Google Scholar
  44. Milton, D. A. and Chenery, S. R. (2001) Sources and uptake of trace metals in otoliths of juvenile barramundi (Lates calcarifer). J.Exp.Mar.Biol.Ecol. 264, 47–65.Google Scholar
  45. Morton, R. M., Halliday, I., and Cameron, D. (1993) Movement of tagged juvenile tailor (Pomatomus saltatrix) in Moreton Bay, Queensland. Aust.J.Mar.FreshwaterRes. 44, 811–816.Google Scholar
  46. Mugiya, Y. and Tanaka, S. (1995) Incorporation of water-borne strontium into otoliths and its turnover in the goldfish Carassius auratus: effects of strontium concentrations, temperature and 17 â-estradiol. Fish.Sci. 61, 29–35.Google Scholar
  47. Negus, M. T. (1999) Thermal marking of otoliths in lake trout sac fry. N.Amer.J.Fish.Manage. 19, 127–140.Google Scholar
  48. Nielson, A. E. and Christoffersen, J. (1982) The mechanisms of crystal growth and dissolution. In: Nancollas, G. H. (ed.), Biological Mineralization and Demineralization. Springer-Verlag, New York, pp. 37–77.Google Scholar
  49. Palmer, M. R. and Edmonds, J. S. (1989) The strontium isotope budget of the modern ocean. Earth Planet.Sci.Lett. 92, 11–26.Google Scholar
  50. Patterson, W. P. (1998) North American continental seasonality during the last millennium: high resolution analysis of sagittal otoliths. Palaeogeogr.Palaeoclimatol.Palaeoecol. 138, 271–303.Google Scholar
  51. Payan, P., Kossmann, H., Watrin, A., Mayergostan, N. and Boeuf, G. (1997) Ionic composition of endolymph in teleosts – origin and importance of endolymph alkalinity. J.Exp.Biol. 200, 1905–1912.Google Scholar
  52. Payan, P., Edeyer, A., De Pontual, H., Borelli, G., Boeuf, G. and Mayer-Gostan, N. (1999) Chemical composition of saccular endolymph and otolith in fish inner ear: lack of spatial uniformity. Am.J.Physiol.Regulatory Integrative Comp.Physiol. 46, 123–131.Google Scholar
  53. Pollard, M., Kingsford, M. and Battaglene, S. (1999) Chemical marking of juvenile snapper, Pagrus auratus (Sparidae), by incorporation of strontium into dorsal spines. Fish.Bull. 97, 118–131.Google Scholar
  54. Radtke, R. L. and Shepherd, B. S. (1991) Current methodological refinements for the acquisition of life history information in fishes: paradigms from pan-oceanic billfishes. Comp.Biochem.Physiol.A. 100, 323–333.Google Scholar
  55. Radtke, R. L. and Kinzie, R. A. (1996) Evidence of a marine larval stage in endemic Hawaiian stream gobies from isolated high-elevation locations. Trans.Am.Fish.Soc. 125, 613–621.Google Scholar
  56. Rieman, B. E., Myers, D. L. and Nielsen, R. L. (1994) Use of otolith microchemistry to discriminate Oncorhynchus nerka of resident and anadromous origins. Can.J.Fish.Aquat.Sci. 51, 68–77.Google Scholar
  57. Romanek, C. S. and Gauldie, R. W. (1996) A predictive model of otolith growth in fish based on the chemistry of the endolymph. Comp.Biochem.Physiol. A114, 71–79.Google Scholar
  58. Rose, G. A. and Kulka, D. W. (1999) Hyperaggregation of fish and fisheries: how catch-per-unit-effort increased as the northern cod (Gadus morhua) declined. Can.J.Fish.Aquat.Sci. 56, 118–127.Google Scholar
  59. Sadovy, Y. and Severin, K. P. (1992) Trace elements in biogenic aragonite: correlation of body growth rate and strontium levels in the otoliths of the white grunt, Haemulon plumieri (Pisces: Haemulidae). Bull.Mar.Sci. 50, 237–257.Google Scholar
  60. Schroder, S., Knudsen, C. and Volk, E. (1995) Marking salmon fry with strontium chloride solutions. Can.J.Fish.Aquat.Sci. 52, 1141–1149.Google Scholar
  61. Secor, D. H. and Rooker, J. R. (2000) Is otolith strontium a useful scalar of life cycles in estuarine fishes? Fish.Res. 46, 359–371.Google Scholar
  62. Secor, D. H., Henderson-Arzapalo, A. and Piccoli, P. M. (1995) Can otolith microchemistry chart patterns of migration and habitat utilization in anadromous fishes? J.Exp.Mar.Biol.Ecol. 192, 15–33.Google Scholar
  63. Secor, D. H., Rooker, J. R., Zlokovitz, E. and Zdanowicz, V. S. (2001) Identification of riverine, estuarine, and coastal contingents of Hudson River striped bass based upon otolith elemental fingerprints. Mar.Ecol.Prog.Ser. 211, 245–253.Google Scholar
  64. Sinclair, D. J., Kinsley, L. P. J. and McCulloch, M. T. (1998) High resolution analysis of trace elements in corals by laser ablation ICP-MS. Geochim.Cosmochim.Acta 62, 1889–1901.Google Scholar
  65. Snyder, R. J., McKeown, B. A., Colbow, K. and Brown, R. (1992) Use of dissolved strontium in scale marking of juvenile salmonids: effect of concentration and exposure time. Can.J.Fish.Aquat.Sci. 49, 780–782.Google Scholar
  66. Thorrold, S. R., Jones, C. M. and Campana, S. E. (1997) Response of otolith microchemistry to environmental variations experi-enced by larval and juvenile Atlantic croaker (Micropogonias undulatus). Limnol.Oceanogr. 42, 102–111.Google Scholar
  67. Thresher, R. E. (1999) Elemental composition of otoliths as a stock delineator in fishes. Fish.Res. 43, 165–204.Google Scholar
  68. Tomczak, M. and Godfrey, S. (1994) Regional Oceanography: An Introduction. Pergamon Press, New York, 422 pp.Google Scholar
  69. Toole, C. L., Markle, D. F. and Harris, P. M. (1993) Relationships between otolith microstructure, microchemistry, and early life. 235 history events in Dover sole, Microstomus pacificus. Fish.Bull. 91, 732–753.Google Scholar
  70. Townsend, D. W., Radtke, R. L., Corwin, S. and Libby, D. A. (1992) Strontium:calcium ratios in juvenile Atlantic herring Clupea harengus L. otoliths as a function of water temperature. J.Exp.Mar.Biol.Ecol. 160, 131–140.Google Scholar
  71. Townsend, D. W., Radtke, R. L., Malone, D. P. and Wallinga, J. P. (1995) Use of otolith strontium: calcium ratios for hindcasting larval cod Gadus morhua distributions relative to water masses on Georges Bank. Mar.Ecol.Prog.Ser. 119, 37–44.Google Scholar
  72. Tsukamoto, K. and Arai, T. (2001) Facultative catadromy of the eel Anguilla japonica between freshwater and seawater habitats. Mar.Ecol.Prog.Ser. 220, 265–276.Google Scholar
  73. Tzeng, W. N. (1996) Effects of salinity and ontogenetic movements on strontium:calcium ratios in the otoliths of the Japanese eel, Anguilla japonica Temminck and Schlegel. J.Exp.Mar.Biol.Ecol. 199, 111–122.Google Scholar
  74. Tzeng, W. N., Severin, K. P. and Wickström, H. (1997) Use of otolith microchemistry to investigate the environmental history of European eel Anguilla anguilla. Mar.Ecol.Prog.Ser. 149, 73–81.Google Scholar
  75. Volk, E. C., Schroder, S. L. and Grimm, J. J. (1999) Otolith thermal marking. Fish.Res. 43, 205–219.Google Scholar
  76. Wells, B. K., Bath, G. E., Thorrold, S. R. and Jones, C. M. (2000) Incorporation of strontium, cadmium, and barium in juvenile spot (Leiostomus xanthurus) scales reflects water chemistry. Can.J.Fish.Aquat.Sci. 57, 2122–2129.Google Scholar
  77. Yamashita, Y., Otake, T. and Yamada, H. (2000) Relative contribu-tions from exposed inshore and estuarine nursery grounds to the recruitment of stone flounder, Platichthys bicoloratus, estimated using otolith Sr:Ca ratios. Fish.Oceanogr. 9, 316–327.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Travis S. Elsdon
    • 1
  • Bronwyn M. Gillanders
    • 1
  1. 1.Southern Seas Ecology Laboratories, School of Earth and Environmental ScienceThe University of AdelaideAdelaideAustralia

Personalised recommendations