Moving-Medium Biofilm Reactors

  • M. Rodgers
  • X.-M. Zhan


Four moving-medium biofilm reactors treating wastewater were reviewed in this paper: the rotating biological contactor (RBC), the moving bed biofilm reactor (MBBR), the vertically moving biofilm reactor (VMBR) and the fluidized-bed reactor (FBR). The RBC process has been applied widely. MBBR is a good process for upgrading current wastewater treatment systems. VMBR is suitable for treating small wastewater flows. FBR can maximize pollutant removals and minimize sludge production.

biofilm rotating biological contactor moving bed biofilm reactor vertically moving biofilm reactor fluidized-bed reactor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andreottola G, Foladori P & Ragazzi M (2000a)Upgrading of a small wastewater treatment plant in a cold climate region using a moving bed bio film reactor (MBBR)system.Water Sci.Technol.41(1):177–185Google Scholar
  2. Andreottola G, Foladori P, Ragazzi M & Tatano F (2000b) Experimental comparison between MBBR and activated sludge system for the treatment of municipal wastewater. Water Sci.Technol.41(4–5):375–382Google Scholar
  3. Banerjee G (1997)Hydraulics of bench-scale rotating biological contactor.Water Res.31:2500–2510Google Scholar
  4. Bosander J & Westlund AD (2000) Operation of full-scale fluidized-bed for denitri fication.Water Sci.Technol. 41 (9): 115–121Google Scholar
  5. Boumansour BE & Vasel JL (1998)A new tracer gas method to measure oxygen transfer and enhancement factor on RBC. Water Res.32:1049–1058Google Scholar
  6. Broch-Due A, Andersen R & Kristoffersen O (1994)Pilot plant experience with an aerobic moving bed bio lm reactor for treatment of NSSC wastewater.Water Sci.Technol.29(5–6): 283–294Google Scholar
  7. Broch-Due A, Andersen R & Opheim B (1997)Treatment of integrated newsprint mill wastewater in moving bed bio film reactors.Water Sci.Technol.35(2–3):173–180Google Scholar
  8. Chen S-D, Chen C-Y, Shen Y-C, Chiu C-M & Cheng H-J (1996)Treatment of high-strength nitrate wastewater by biological methods-operational characteristics study.Water Sci.Technol.34(1–2):269–276Google Scholar
  9. Cheng S-S, Chen W-C & Hwang H-H (1997)Bio film formation:the effects of hydrodynamic and substrate feeding patterns in three phase draft-tubefluidized bed for nitri fication process.Water Sci.Technol.36(12):83–90Google Scholar
  10. de Beer D, Stoodley P & Lewandowski Z (1996)Liquid flow and mass transport in heterogeneous bio films.Water Res.30: 2761–2765Google Scholar
  11. Droste RL (1997)Theory and Practice of Water and Waste-water Treatment,John Wiley & Sons, New York.Google Scholar
  12. Flanagan WP (1998)Biodegradation of dichloromethane in a granular activated carbon fluidized-bed reactor.Water Environ.Res.70:60–66Google Scholar
  13. Galvan A, Urbina P & de Castro F (2000)Characterization of lamentous microorganisms in rotating biological contactor bio lms of wastewater treatment plants.Bioprocess Eng.22: 257–260Google Scholar
  14. Grady CPL,Jr & Lim HC (1980)Biological Wastewater Treatment:Theory and Applications,Marcel Dekker, New YorkGoogle Scholar
  15. Green M, Mels A, Lahav O & Tarre S (1996)Biological-ion exchange process for ammonium removal from secondary efluent.Water Sci.Technol.34(1–2):449–458Google Scholar
  16. Green M, Ruskol Y, Tarre S & Loewenthal RE (2002a) Nitri fication utilizing CaCO3 as the buffering agent.Environ. Technol.23:303–308Google Scholar
  17. Green M, Ruskol Y, Shaviv A & Tarre S (2002b)The effect of CO2 concentration on a nitrifying chalk reactor.Water Res. 36:2147–2151Google Scholar
  18. Griffin P & Findlay GE (2000)Process and engineering improvements to rotating biological contactor design.Water Sci.Technol.41(1):137–144Google Scholar
  19. Harremoës P & Henze M (2002)Bio filters.In:Henze M, Harremoës P, la C. Jansen J & Arvin E (Eds)Wastewater Treatment:Biological and Chemical Processes,(pp 157–207). Springer, HeidelbergGoogle Scholar
  20. Harvey P (2002)Moving bed bio film reactors:a robust solution for wastewater treatment.Chem.Eng.(London)729:33Google Scholar
  21. Helness H & Ødegaard H (1999)Biological phosphorus removal in a sequencing batch moving bed bio film reactor. Water Sci.Technol.40(4–5):161–168Google Scholar
  22. Hidalgo MD & Garcia-Encina PA (2002)Bio film development and bed segregation in a methanogenic fluidized bed reactor. Water Res.36:3083–3091Google Scholar
  23. Holst TC, Truc A & Pujol R (1997)Anaerobic fluidized beds: ten years of industrial experience.Water Sci.Technol.36(6– 7):415–422 2 barare.htmGoogle Scholar
  24. Jahren SJ, Rintala JA & Ødegaard H(2002)Aerobic moving bed bio lm reactor treating thermomechanical pulping white-water under thermophilic conditions.Water Res.36:1067–1075Google Scholar
  25. Koran KM, Suidan, MT, Khodadoust AP, Sorial GA & Brenner RC (2001)Effectiveness of an anaerobic granular activated carbonfluidized-bed bioreactor to treat soil wash fluids:a proposed strategy for remediating PCP/PAH contaminated soils.Water Res.35:2363–2370Google Scholar
  26. Lazarova V & Manem J (2000)Innovative bio lm treatment technologies for water and wastewater treatment.In:Bryers JD (Ed)Bio films II:Process Analysis and Applications (pp 159–206).Wiley-Liss, New YorkGoogle Scholar
  27. Lu C, Li H-C, Lee LY & Lin M-R (1997)Effects of disc rotational speed and submergence on the performance of an anaerobic rotating biological contactor.Environ.Int.23: 253–263Google Scholar
  28. Maloney SW, Adrian NR, Hickey RF & Heine RL (2002) Anaerobic treatment of pinkwater in afluidized bed reactor containing GAC.J.Hazard.Mater.92:77–88Google Scholar
  29. Martin-Cereceda M, Alvarez AM, Serrano S & Guinea A (2001)Confocal and light microscope examination of protozoa and other microorganisms in the bio films from a rotating biological contactor wastewater treatment plant.Acta Protozool.40:263–272Google Scholar
  30. Mba D, Bannister RH & Findlay GE (1999)Mechanical redesign of the rotating biological contactor.Water Res.33: 3679–3688Google Scholar
  31. Moteleb MA, Suidan MT, Kim J, Davel JL & Adrian NR (2001)Anaerobic degradation of 2,4,6-trinitrotoluene in granular activated carbonfluidized bed and batch reactors. Water Sci.Technol.43(1):67–75Google Scholar
  32. Ødegaard H (2000)Advanced compact wastewater treatment based on coagulation and moving bed bio film processes. Water Sci.Technol.42(12):33–48Google Scholar
  33. Ødegaard H, Rusten B & Badin H (1993)Small wastewater treatment plants based on moving bed bio film reactors. Water Sci.Technol.28(10):351–359Google Scholar
  34. Ødegaard H, Rusten B & Westrum T (1994)A new moving bed bio lm reactor-applications and results.Water Sci.Technol. 29(10–11):157–165Google Scholar
  35. Okabe S, Hiratia K, Ozawa Y & Watanabe Y (1996)Spatial microbial distributions of nitri ers and heterotrophs in mixed-population bio films.Biotechnol.Bioeng.50:24–35Google Scholar
  36. Pastorelli G, Andreottola, G, Canziani R, de Fraja E, de Pascalis F, Gurrieri G & Rozzi A (1997)Pilot-plant experiments with moving-bed bio lm reactors.Water Sci.Technol. 36(1):43–50Google Scholar
  37. Rodgers M (1999)Organic carbon removal using a new bio lm reactor.Water Res.33:1495–1499Google Scholar
  38. Rodgers M & Burke D (2001)Carbonaceous oxidation using a new vertically moving bio lm system.Environ.Technol.22: 673–678Google Scholar
  39. Rodgers M & Burke D (2002)Nitrogen removal using a vertically moving bio lm system.Water Sci.Technol.47(1): 71–76Google Scholar
  40. Rodgers M, Zhan X-M & Gallagher B (2003a)A pilot plant study using a vertically moving bio lm process to treat municipal wastewater.Biore.Technol.89:139–143Google Scholar
  41. Rodgers M, Zhan X-M & Casey A (2003b)Ammonium removal using a vertically moving bio lm system.J Environ. Sci.Health Part A 38:2483–2494Google Scholar
  42. Rodgers M, Zhan X-M & Casey A (2004)Oxygen transfer and industrial wastewater treatment effciency of a vertically moving bio lm system.Water Air Soil Pollut 151:165–178Google Scholar
  43. Rusten B, Ødegaard H & Lundar A (1992)Treatment of dairy wastewater in a novel moving bed bio lm reactor.Water Sci. Technol.26(3–4):703–711Google Scholar
  44. Rusten B, Siljudalen JG & Strand H (1996)Upgrading of a biological-chemical treatment plant for cheese factory waste-water.Water Sci.Technol.34(11):41–49Google Scholar
  45. Rusten B, McCoy M, Proctor R & Siljudalen JG (1998)The innovative moving bed bio lm reactor/solids contact reaeration process for secondary treatment of municipal waste-water.Water Environ.Res.70:1083–1089Google Scholar
  46. Rusten B, Johnson CH, Devall S, Davoren D & Cashion BS (1999)Biological pretreatment of a chemical plant wastewater in high-rate moving bed bio lm reactors.Water Sci.Technol.39(10–11):257–264Google Scholar
  47. Rusten B, Hellstrom BG, Hellstrom F, Sehested O, Skjelfoss E & Svendsen B (2000)Pilot testing and preliminary design of moving bed bio lm reactors for nitrogen removal at the FREVAR wastewater treatment plant.Water Sci.Technol. 41(4):13–20Google Scholar
  48. Surampalli RY & Baumann ER (1997)Role of supplemental aeration in improving overloaded first-stage RBC performance.Water Air Soil Pollut.98:1–15Google Scholar
  49. Sutton PM, Hurvid J & Hoeksema M (1999)Biological fluidized-bed treatment of wastewater from byproduct coking operations:full-scale case history.Water Environ.Res.71: 5–9Google Scholar
  50. Tchobanoglous G, Burton FL & Stensel MD (2003) Wastewater Engineering:Treatment and Reuse, Metcalf & Eddy, New YorkGoogle Scholar
  51. Teixeira P & Oliveira R (2001)Denitri cation in a closed rotating biological contactor:effect of disk submergence. Process Biochem.37:345–349Google Scholar
  52. Trulear MG & Characklis WG (1982)Dynamics of bio lm processes.J.Water Pollut.Control Fed.54:1288–1301Google Scholar
  53. USEPA (1993)Nitrogen Removal,Technomic Publishing Company, Pennsylvania,USAGoogle Scholar
  54. WEF (Water Environment Federation)& ASCE (American Society of Civil Engineers) (1998) Design of Municipal Wastewater Treatment Plants,WEF and ASCE, Alexandria and Reston,USAGoogle Scholar
  55. Winkler MA (1981)Biological Treatment of Wastewater,John Wiley & Sons, New YorkGoogle Scholar
  56. Zhu S & Chen S (2001)Impacts of Reynolds number on nitri cation bio lm kinetics.Aquacult.Eng.24:213–229Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • M. Rodgers
    • 1
  • X.-M. Zhan
    • 1
  1. 1.Department of Civil EngineeringNational University of IrelandGalwayIreland

Personalised recommendations