Reliable Computing

, Volume 10, Issue 6, pp 437–467 | Cite as

Ostrowski-Like Method with Corrections for the Inclusion of Polynomial Zeros

  • Miodrag S. Petković
  • Dušan M. Milošević


In this paper we construct iterative methods of Ostrowski's type for the simultaneous inclusion of all zeros of a polynomial. Using the concept of the R-order of convergence of mutually dependent sequences, we present the convergence analysis of the total-step and the single-step methods with Newton and Halley's corrections. The case of multiple zeros is also considered. The suggested algorithms possess a great computational efficiency since the increase of the convergence rate is attained without additional calculations. Numerical examples and an analysis of computational efficiency are given.


Mathematical Modeling Computational Mathematic Convergence Rate Iterative Method Industrial Mathematic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alefeld, G. and Herzberger, J.: Introduction to Interval Computation, Academic Press, New York, 1983.Google Scholar
  2. 2.
    Alefeld, G. and Herzberger, J.: ¨ Uber Simultanverfahren zur Bestimmung reeller Polynomwurzeln, Z. Angew. Math. Mech. 54 (1974), pp. 413–420.Google Scholar
  3. 3.
    Carstensen, C.: Anwendungen von Begleitmatrizen, Z. Angew. Math. Mech. 71 (1991), pp. 809–812.Google Scholar
  4. 4.
    Carstensen, C. and Petkovi´ c, M. S.: An Improvement of Gargantini's Simultaneous Inclusion Method for Polynomial Roots by Schroeder's Correction, Appl. Numer. Math. 25 (1993), pp. 59–67.Google Scholar
  5. 5.
    Farmer, M. R. and Loizou, G.: Locating Multiple Zeros Interactively, Comput. Math. Appl. 11(1985), pp. 595–603.Google Scholar
  6. 6.
    Gargantini, I.: Parallel Laguerre Iterations: Complex Case, Numer. Math. 26 (1976), pp. 317–323.Google Scholar
  7. 7.
    Gargantini, I. and Henrici, P.: Circular Arithmetic and the Determination of Polynomial Zeros, Numer. Math. 18 (1972), pp. 305–320.Google Scholar
  8. 8.
    Herceg, Đ.: Computational Implementation and Interpretation of Iterative Methods for Solving Equations, Master Theses, University of Novi Sad, Novi Sad, 1997.Google Scholar
  9. 9.
    Herzberger, J. and Metzner, L.: On the Q-order and R-order of Convergence for Coupled Sequences Arising in Iterative Numerical Processes, in: Alefeld, G. and Herzberger, J. (eds), Numerical Methods and Error Bounds, Mathematical Research 89, Akademie Verlag, Berlin, 1996, pp. 120–131.Google Scholar
  10. 10.
    Kravanja, P.: On Computing Zeros of Analytic Functions and Related Problems in Structured Numerical Linear Algebra, Ph.D. Thesis, Katholieke Universiteit Leuven, Lueven, 1999.Google Scholar
  11. 11.
    Marden, M,: Geometry of Polynomials, AMS Mathematical Surveys 3 (1996).Google Scholar
  12. 12.
    Niu, X. M. and Sakurai, T.: A Method for Finding the Zeros of Polynomials Using a Companion Matrix, Japan J. Industr. Appl. Math. 20 (2003), pp. 239–256.Google Scholar
  13. 13.
    Ostrowski, A. M.: Solution of Equations in Euclidean and Banach Space, Academic Press, New York, 1973.Google Scholar
  14. 14.
    Petkovíc, M. S.: Asynchronous Methods for Simultaneous Inclusion of Polynomial Zeros, in: Alefeld, G. and Herzberger, J. (eds), Numerical Methods and Error Bounds, Akademie Verlag, Berlin, 1996, pp. 178–187.Google Scholar
  15. 15.
    Petkovíc, M. S.: Halley-like Method with Corrections for the Inclusion of Polynomial Zeros, Computing 62 (1999), pp. 69–88.Google Scholar
  16. 16.
    Petkovíc, M. S.: Iterative Methods for Simultaneous Inclusion of Polynomial Zeros, Springer-Verlag, Berlin-Heidelberg-New York, 1989.Google Scholar
  17. 17.
    Petkovíc, M. S.: On a Generalization of the Root Iterations for Polynomial Complex Zeros, Computing 27 (1981), pp. 37–55.Google Scholar
  18. 18.
    Petkovi´ c, M. S. and Carstensen, C.: On Some Improved Inclusion Methods for Polynomial Roots with Weierstrass' Correction, Comput. Math. with Appl. 25 (1993), pp. 59–67.Google Scholar
  19. 19.
    Petkovíc, M. S., Carstensen, C., and Trajkovíc, M.: Weierstrass Formula and Zero-Finding Methods, Numer. Math. 69 (1995), pp. 353–372.Google Scholar
  20. 20.
    Petkovíc, M. S. and Petkovíc, L. D.: Complex Interval Arithmetic and Its Applications, Wiley-VCH, Berlin-Weinheim-New York, 1998.Google Scholar
  21. 21.
    Petkovíc, M. S. and Stefanovíc, L.: On Some Improvements of Square Root Iteration for Polynomial Complex Zeros, J. Comput. Appl. Math. 10 (1986), pp. 97–106.Google Scholar
  22. 22.
    Petkovíc, M. S. and Vraníc, D. V.: The Convergence of Euler-like Method for the Simultaneous Inclusion of Polynomial Zeros, Comput. Math. with Appl. 39 (2000), pp. 95–105.Google Scholar
  23. 23.
    Wang, X. and Zheng, S.: A Family of Parallel and Interval Iterations for Finding Simultaneously All Roots of a Polynomial with Rapid Convergence (I), J. Comput. Math. 4 (1984), pp. 70–76.Google Scholar
  24. 24.
    Wang, X. and Zheng, S.: The Quasi-Newton Method in Parallel Circular Iteration, J. Comput.Math. 4 (1984), pp. 305–309.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Miodrag S. Petković
    • 1
  • Dušan M. Milošević
    • 1
  1. 1.Faculty of Electronic EngineeringUniversity of NišMontenegro, e-mail

Personalised recommendations