Reviews in Endocrine and Metabolic Disorders

, Volume 5, Issue 3, pp 249–254 | Cite as

Egr-1 is a Major Vascular Pathogenic Transcription Factor in Atherosclerosis and Restenosis

  • Florian Blaschke
  • Dennis Bruemmer
  • Ronald E. Law
Egr-1 transcription factor atherosclerosis restenosis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sukhatme VP, Cao XM, Chang LC, Tsai-Morris CH, Stamenkovich D, Ferreira PC, Cohen DR, Edward SA, Shows TB, Curran T, Le Beau MM, Adamson ED. A zinc finger-encoding gene coregulated with c-fos during growth and differentiation, and after cellular depolarization. Cell 1988;53:37-43.Google Scholar
  2. 2.
    Gashler A, Sukhatme VP. Early growth response Protein 1 (Egr-1): Prototype of a zinc-finger family of transcription factors. Prog Nucleic Acid Res Mol Biol 1995;50:191-224.Google Scholar
  3. 3.
    Kaufmann K, Thiel G. Epidermal growth factor and platelet-derived growth factor induce expression of Egr-1, a zinc finger transcription factor, in human malignant glioma cells. J Neurol Sci 2001;189:83-91.Google Scholar
  4. 4.
    Houston P, Dickson MC, Ludbrook V, White B, Schwachtgen JL, McVey JH, Mackman N, Reese JM, Gorman DG, Campbell C, Braddock M. Fluid shear stress induction of the tissue factor promoter In vitro and in vivo is mediated by Egr-1. Arterioscler Thromb Vasc Biol 1999;19:281-289.Google Scholar
  5. 5.
    Houston P, White BP, Campbell CJ, Braddock M. Delivery and expression of fluid shear stress-inducible promoters to the vessel wall: Applications for cardiovascular gene therapy. Hum Gene Ther 1999;10:3031-3044.Google Scholar
  6. 6.
    Akai Y, Homma T, Burns KD, Yasuda T, Badr KF, Harris RC. Mechanical stretch/relaxation of cultured rat mesangial cells induces protooncogenes and cyclooxygenase. Am J Physiol 1994;267:C482-C490.Google Scholar
  7. 7.
    Yan SF, Mackman N, Kisiel W, Stern DM, Pinsky DJ. Hypoxia/Hypoxemia-Induced activation of the procoagulant pathways and the pathogenesis of ischemia-associated thrombosis. Arterioscler Thromb Vasc Biol 1999;19:2029-2035.Google Scholar
  8. 8.
    Yan SF, Lu J, Zou YS, Soh-Won J, Cohen DM, Buttrick PM, Cooper DR, Steinberg SF, Mackman N, Pinsky DJ, Stern DM. Hypoxia-associated induction of early growth response-1 gene expression. J Biol Chem. 1999;274:15030-15040.Google Scholar
  9. 9.
    Khachigian LM, Lindner V, Williams AJ, Collins T. Egr-1-induced endothelial gene expression: A common theme in vascular injury. Science 1996;271:1427-1431.Google Scholar
  10. 10.
    Sakamoto KM, Bardeleben C, Yates KE, Raines MA, Golde DW, Gasson JC. 5′ upstream sequence and genomic structure of the human primary response gene, EGR-1/TIS8. Oncogene 1991;6:867-871.Google Scholar
  11. 11.
    Christy B, Nathans D. DNA binding site of the growth factor-inducible protein Zif268. Proc Natl Acad Sci USA 1989;86:8737-8741.Google Scholar
  12. 12.
    Silverman ES, Du J, Williams AJ, Wadgaonkar R, Drazen JM, Collins T. cAMP-response-element-binding-protein-binding protein (CBP) and p300 are transcriptional co-activators of early growth response factor-1 (Egr-1). Biochem J 1998;336(Pt 1):183-189.Google Scholar
  13. 13.
    Gashler AL, Swaminathan S, Sukhatme VP. A novel repression module, an extensive activation domain, and a bipartite nuclear localization signal defined in the immediate-early transcription factor Egr-1. Mol Cell Biol 1993;13:4556-4571.Google Scholar
  14. 14.
    Russo MW, Sevetson BR, Milbrandt J. Identification of NAB1, a repressor of NGFI-A-and Krox20-mediated transcription. Proc Natl Acad Sci USA 1995;92:6873-6877.Google Scholar
  15. 15.
    Svaren J, Sevetson BR, Apel ED, Zimonjic DB, Popescu NC, Milbrandt J. NAB2, a corepressor of NGFI-A (Egr-1) and Krox20, is induced by proliferative and differentiative stimuli. Mol Cell Biol 1996;16:3545-3553.Google Scholar
  16. 16.
    Miano JM, Berk BC. NAB2: A transcriptional brake for activated gene expression in the vessel wall? Am J Pathol 1999;155:1009-1012.Google Scholar
  17. 17.
    Silverman ES, Khachigian LM, Santiago FS, Williams AJ, Lindner V, Collins T. Vascular smooth muscle cells express the transcriptional corepressor NAB2 in response to injury. Am J Pathol 1999;155:1311-1317.Google Scholar
  18. 18.
    Lim CP, Jain N, Cao X. Stress-induced immediate-early gene, egr-1, involves activation of p38/JNK1. Oncogene 1998;16:2915-2926.Google Scholar
  19. 19.
    Guha M, O'Connell MA, Pawlinski R, Hollis A, McGovern P, Yan SF, Stern D, Mackman N. Lipopolysaccharide activation of the MEK-ERK1/2 pathway in human monocytic cells mediates tissue factor and tumor necrosis factor alpha expression by inducing Elk-1 phosphorylation and Egr-1 expression. Blood 2001;98:1429-1439.Google Scholar
  20. 20.
    Khachigian LM, Williams AJ, Collins T. Interplay of Sp1 and Egr-1 in the proximal platelet-derived growth factor A-chain promoter in cultured vascular endothelial cells. J Biol Chem 1995;270:27679-27686.Google Scholar
  21. 21.
    Silverman ES, Khachigian LM, Lindner V, Williams AJ, Collins T. Inducible PDGF A-chain transcription in smooth muscle cells is mediated by Egr-1 displacement of Sp1 and Sp3. Am J Physiol 1997;273:H1415-H1426.Google Scholar
  22. 22.
    Biesiada E, Razandi M, Levin ER. Egr-1 activates basic fibroblast growth factor transcription. Mechanistic implications for astrocyte proliferation. J Biol Chem 1996;271:18576-18581.Google Scholar
  23. 23.
    Kim SJ, Jeang KT, Glick AB, Sporn MB, Roberts AB. Promoter sequences of the human transforming growth factor-beta 1 gene responsive to transforming growth factor-beta 1 autoinduction. J Biol Chem 1989;264:7041-7045.Google Scholar
  24. 24.
    Maltzman JS, Carmen JA, Monroe JG. Transcriptional regulation of the Icam-1 gene in antigen receptor-and phorbol ester-stimulated B lymphocytes: Role for transcription factor EGR1. J Exp Med 1996;183:1747-1759.Google Scholar
  25. 25.
    Harrington MA, Edenberg HJ, Saxman S, Pedigo LM, Daub R, Broxmeyer HE. Cloning and characterization of the murine promoter for the colony-stimulating factor-1-encoding gene. Gene 1991;102:165-170.Google Scholar
  26. 26.
    Cui MZ, Parry GC, Oeth P, Larson H, Smith M, Huang RP, Adamson ED, Mackman N. Transcriptional regulation of the tissue factor gene in human epithelial cells is mediated by Sp1 and EGR-1. J Biol Chem 1996;271:2731-2739.Google Scholar
  27. 27.
    Verde P, Boast S, Franze A, Robbiati F, Blasi F. An upstream enhancer and a negative element in the 5′ flanking region of the human urokinase plasminogen activator gene. Nucleic Acids Res 1988;16:10699-10716.Google Scholar
  28. 28.
    Silverman ES, Collins T. Pathways of Egr-1-mediated gene transcription in vascular biology. Am J Pathol 1999;154:665-670.Google Scholar
  29. 29.
    Liu C, Rangnekar VM, Adamson E, Mercola D. Suppression of growth and transformation and induction of apoptosis by EGR-1. Cancer Gene Ther 1998;5:3-28.Google Scholar
  30. 30.
    Gousseva N, Kugathasan K, Chesterman CN, Khachigian LM. Early growth response factor-1 mediates insulin-inducible vascular endothelial cell proliferation and regrowth after injury. J Cell Biochem 2001;81:523-534.Google Scholar
  31. 31.
    Hasan RN, Phukan S, Harada S. Differential regulation of early growth response gene-1 expression by insulin and glucose in vascular endothelial cells. Arterioscler Thromb Vasc Biol 2003;23:988-993.Google Scholar
  32. 32.
    Keeton AB, Bortoff KD, Bennett WL, Franklin JL, Venable DY, Messina JL. Insulin Regulated Expression of Egr-1 and Krox20: Dependence on Erk1/2 and Interaction with P38 and Pi3-Kinase Pathways. Endocrinology 2003;144:5402-5410.Google Scholar
  33. 33.
    Ling S, Dai A, Ma YH, Wilson E, Chatterjee K, Ives HE, Sudhir K. Matrix-dependent gene expression of egr-1 and PDGF A regulate angiotensin II-induced proliferation in human vascular smooth muscle cells. Hypertension 1999;34:1141-1146.Google Scholar
  34. 34.
    Chen XL, Tummala PE, Olbrych MT, Alexander RW, Medford RM. Angiotensin II induces monocyte chemoattractant protein-1 gene expression in rat vascular smooth muscle cells. Circ Res 1998;83:952-959.Google Scholar
  35. 35.
    Capers Q4th, Alexander RW, Lou P, De Leon H, Wilcox JN, Ishizaka N, Howard AB, Taylor WR. Monocyte chemoattractant protein-1 expression in aortic tissues of hypertensive rats. Hypertension 1997;30:1397-1402.Google Scholar
  36. 36.
    Lassegue B, Sorescu D, Szocs K, Yin Q, Akers M, Zhang Y, Grant SL, Lambeth JD, Griendling KK. Novel gp91(phox) homologues in vascular smooth muscle cells: Nox1 mediates angiotensin II-induced superoxide formation and redox-sensitive signaling pathways. Circ Res 2001;88:888-894.Google Scholar
  37. 37.
    Ross R. Atherosclerosis-an inflammatory disease. N Engl J Med 1999;340:115-126.Google Scholar
  38. 38.
    Libby P. Inflammation in atherosclerosis. Nature 2002;420:868-874.Google Scholar
  39. 39.
    Yao J, Mackman N, Edgington TS, Fan ST. Lipopolysaccharide induction of the tumor necrosis factor-alpha promoter in human monocytic cells. Regulation by Egr-1, c-Jun, and NF-kappaB transcription factors. J Biol Chem 1997;272:17795-17801.Google Scholar
  40. 40.
    Lin JX, Leonard WJ. The immediate-early gene product Egr-1 regulates the human interleukin-2 receptor beta-chain promoter through noncanonical Egr and Sp1 binding sites. Mol Cell Biol 1997;17:3714-3722.Google Scholar
  41. 41.
    Skerka C, Decker EL, Zipfel PF. A regulatory element in the human interleukin 2 gene promoter is a binding site for the zinc finger proteins Sp1 and EGR-1. J Biol Chem 1995;270:22500-22506.Google Scholar
  42. 42.
    Boring L, Gosling J, Cleary M, Charo IF. Decreased lesion formation in CCR2—/— mice reveals a role for chemokines in the initiation of atherosclerosis. Nature 1998;394:894-897.Google Scholar
  43. 43.
    Aiello RJ, Bourassa PA, Lindsey S, Weng W, Natoli E, Rollins BJ, Milos PM. Monocyte chemoattractant protein-1 accelerates atherosclerosis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 1999;19:1518-1525.Google Scholar
  44. 44.
    Hubbard AK, Rothlein R. Intercellular adhesion molecule-1 (ICAM-1) expression and cell signaling cascades. Free Radic Biol Med 2000;28:1379-1386.Google Scholar
  45. 45.
    Briscoe DM, Cotran RS, Pober JS. Effects of tumor necrosis factor, lipopolysaccharide, and IL-4 on the expression of vascular cell adhesion molecule-1 in vivo. Correlation with CD3 + T cell infiltration. J Immunol 1992;149:2954-2960.Google Scholar
  46. 46.
    Zoellner H, Filonzi EL, Stanton HR, Layton JE, Hamilton JA. Human arterial smooth muscle cells synthesize granulocyte colony-stimulating factor in response to interleukin-1 alpha and tumor necrosis factor-alpha. Blood 1992;80:2805-2810.Google Scholar
  47. 47.
    Filonzi EL, Zoellner H, Stanton H, Hamilton JA. Cytokine regulation of granulocyte-macrophage colony stimulating factor and macrophage colony-stimulating factor production in human arterial smooth muscle cells. Atherosclerosis 1993;99:241-252.Google Scholar
  48. 48.
    Fu M, Zhu X, Zhang J, Liang J, Lin Y, Zhao L, Ehrengruber MU, Chen YE. Egr-1 target genes in human endothelial cells identified by microarray analysis. Gene 2003;315:33-41.Google Scholar
  49. 49.
    Vicari AP, Figueroa DJ, Hedrick JA, Foster JS, Singh KP, Menon S, Copeland NG, Gilbert DJ, Jenkins NA, Bacon KB, Zlotnik A. TECK: A novel CC chemokine specifically expressed by thymic dendritic cells and potentially involved in T cell development. Immunity 1997;7:291-301.Google Scholar
  50. 50.
    Luster AD, Weinshank RL, Feinman R, Ravetch JV. Molecular and biochemical characterization of a novel gamma-interferon-inducible protein. J Biol Chem 1988;263:12036-12043.Google Scholar
  51. 51.
    Topol EJ, Serruys PW. Frontiers in interventional cardiology. Circulation 1998;98:1802-1820.Google Scholar
  52. 52.
    McCaffrey TA, Fu C, Du B, Eksinar S, Kent KC, Bush H Jr, Kreiger K, Rosengart T, Cybulsky MI, Silverman ES, Collins T. High-level expression of Egr-1 and Egr-1-inducible genes in mouse and human atherosclerosis. J Clin Invest 2000;105:653-662.Google Scholar
  53. 53.
    Wakino S, Collins AR, Kintscher U, et al. PPARγ ligands inhibit angiotensin II-induced Egr-1 expression in vivo and In vitro. Circulation, Supplement 2001;104:II-180.Google Scholar
  54. 54.
    Bea F, Blessing E, Bennett B, Levitz M, Wallalce EP, Rosenfeld ME. Simvastatin promotes atherosclerotic plaque stability in apoE-deficient mice independently of lipid lowering. Arterioscler Thromb Vasc Biol 2002;22:1832-1837.Google Scholar
  55. 55.
    Brand E, Herrmann SM, Nicaud V, Evans A, Ruidavets JB, Arveiler D, Luc G, Cambien F, Soubrier F. Identification of two polymorphisms in the early growth response protein-1 gene: Possible association with lipid variables. J Mol Med 2000;78:81-86.Google Scholar
  56. 56.
    Cui MZ, Penn MS, Chisolm GM. Native and oxidized low density lipoprotein induction of tissue factor gene expression in smooth muscle cells is mediated by both Egr-1 and Sp1. J Biol Chem 1999;274:32795-32802.Google Scholar
  57. 57.
    Mechtcheriakova D, Wlachos A, Holzmuller H, Binder RB, Hofer E. Vascular endothelial cell growth factor-induced tissue factor expression in endothelial cells is mediated by EGR-1. Blood 1999;93:3811-3823.Google Scholar
  58. 58.
    Toschi V, Gallo R, Lettino M, Fallon JT, Gertz SD, Fernandez Ortiz A, Chesebro JH, Badimon L, Nemerson Y, Fuster V, Badimon JJ. Tissue factor modulates the thrombogenicity of human atherosclerotic plaques. Circulation 1997;95:594-599.Google Scholar
  59. 59.
    Kim S, Kawamura M, Wanibuchi H, Ohta K, Hamaguchi A, Omura T, Yukimura T, Miura K, Iwao H. Angiotensin II type 1 receptor blockade inhibits the expression of immediate-early genes and fibronectin in rat injured artery. Circulation 1995;92:88-95.Google Scholar
  60. 60.
    Jackson CL, Schwartz SM. Pharmacology of smooth muscle cell replication. Hypertension 1992;20:713-736.Google Scholar
  61. 61.
    Bauters C, Isner JM. The biology of restenosis. Prog Cardiovasc Dis 1997;40:107-116.Google Scholar
  62. 62.
    Santiago FS, Atkins DG, Khachigian LM. Vascular smooth muscle cell proliferation and regrowth after mechanical injury In vitro are Egr-1/NGFI-A-dependent. Am J Pathol 1999;155:897-905.Google Scholar
  63. 63.
    Fahmy RG, Khachigian LM. Antisense Egr-1 RNA driven by the CMV promoter is an inhibitor of vascular smooth muscle cell proliferation and regrowth after injury. J Cell Biochem 2002;84:575-582.Google Scholar
  64. 64.
    Lowe HC, Fahmy RG, Kavurma MM, Baker A, Chesterman CN, Khachigian LM. Catalytic oligodeoxynucleotides define a key regulatory role for early growth response factor-1 in the porcine model of coronary in-stent restenosis. Circ Res 2001;89:670-677.Google Scholar
  65. 65.
    Santiago FS, Lowe HC, Kavurma MM, Chesterman CN, Baker A, Atkins DG, Khachigian LM. New DNA enzyme targeting Egr-1 mRNA inhibits vascular smooth muscle proliferation and regrowth after injury. Nat Med 1999;5:1264-1269.Google Scholar
  66. 66.
    Stein B, Weintraub WS, Gebhart SP, Cohen-Bernstein CL, Grosswald R, Liberman Ha, Douglas JS Jr, Morris DC, King SB 3rd. Influence of diabetes mellitus on early and late outcome after percutaneous transluminal coronary angioplasty. Circulation 1995;91:979-989.Google Scholar
  67. 67.
    Kip KE, Faxon DP, Detre KM, Yeh W, Kelsey SF, Currier JW. Coronary angioplasty in diabetic patients. The National Heart, Lung, and Blood Institute Percutaneous Transluminal Coronary Angioplasty Registry. Circulation 1996;94:1818-1825.Google Scholar
  68. 68.
    Lindner V, Reidy MA, Fingerle J. Regrowth of arterial endothelium. Denudation with minimal trauma leads to complete endothelial cell regrowth. Lab Invest 1989;61:556-563.Google Scholar
  69. 69.
    Lindner V, Fingerle J, Reidy MA. Mouse model of arterial injury. Circ Res 1993;73:792-796.Google Scholar
  70. 70.
    Hamad N, Pichard A, Oboler A, Lindsay J Jr. Left main coronary artery stenosis as a late complication of percutaneous transluminal coronary angioplasty. Am J Cardiol 1987;60:1183-1184.Google Scholar
  71. 71.
    Lowe HC, Chesterman CN, Khachigian LM. Left main coronary artery stenosis after percutaneous transluminal coronary angioplasty: Importance of remaining “minimally invasive”. Catheter Cardiovasc Interv 1999;46:254-255.Google Scholar
  72. 72.
    Santiago FS, Lowe HC, Day FL, Chesterman CN, Khachigian LM. Early growth response factor-1 induction by injury is triggered by release and paracrine activation by fibroblast growth factor-2. Am J Pathol 1999;154:937-944.Google Scholar
  73. 73.
    Lowe HC, Chesterman CN, Hopkins AP, Juergens CP, Khachigian LM. Acute local release of fibroblast growth factor-2 but not transforming growth factor-beta1 following coronary stenting. Thromb Haemost 2001;85:574-576.Google Scholar
  74. 74.
    Khachigian LM, Collins T. Early growth response factor 1: A pleiotropic mediator of inducible gene expression. J Mol Med 1998;76:613-616.Google Scholar
  75. 75.
    Fischman DL, Leon MB, Baim DS, Schatz RA, Savage MP, Penn I, Detre K, Veltri L, Ricci D, Nobuyoshi M, Cleman M, Heuser R, Almond D, Teirstein PS, Fish RD, Colombo A, Brinker J, Moses J, Shaknovich A, Hirshfeld J, Bailey S, Ellis S, Rake R, Goldberg S. A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease. Stent Restenosis Study Investigators. N Engl J Med 1994;331:496-501.Google Scholar
  76. 76.
    Serruys PW, de Jaegere P, Kiemeneij F, Macaya C, Rutsch W, Heyndrickx G, Emanuelsson H, Marco J, Legrand V, Materne P, Belardi J, Sigwart U, Colombo A, Goy JJ, van den Heuvel P, Delcan J, Morel M-A. A comparison of balloon-expandable-stent implantation with balloon angioplasty in patients with coronary artery disease. Benestent Study Group. N Engl J Med 1994;331:489-495.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Florian Blaschke
    • 1
    • 2
  • Dennis Bruemmer
    • 1
  • Ronald E. Law
    • 1
  1. 1.Division of Endocrinology, Diabetes and Hypertension, David Geffen School of MedicineUniversity of CaliforniaLos AngelesUSA;
  2. 2.Department of Medicine/CardiologyGerman Heart InstituteBerlinGermany

Personalised recommendations