Advertisement

The Journal of Real Estate Finance and Economics

, Volume 29, Issue 2, pp 193–209 | Cite as

Alternative Models for Describing Spatial Dependence among Dwelling Selling Prices

  • A. F. Militino
  • M. D. Ugarte
  • L. García-Reinaldos
Article

Abstract

In this article different spatial statistics techniques to analyze the behavior of used dwelling market prices are compared. We fit two lattice models: simultaneous and conditional autoregressive, a geostatistical model, the so-called universal kriging and finally, a linear mixed-effect model. Different spatial neighborhood structures are considered, as well as different spatial weight matrices and covariance models. The results are illustrated through a real data set of 293 properties from Pamplona, Spain.

linear mixed effects SAR CAR kriging hedonic pricing geostatistical lattice models 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anselin, L. (1988). Spatial Econometrics: Methods and Models. Dordrecht: Kluwer.Google Scholar
  2. Basu, S., and T. G. Thibodeau. (1998). "Analysis of Spatial Autocorrelation in House Prices," Journal of Real Estate Finance and Economics 17, 61-85.Google Scholar
  3. Besag, J. E. (1974). "Spatial Interaction and the Statistical Analysis of Lattice Systems," Journal of Royal Statistical Society, Series B 36, 192-236.Google Scholar
  4. Cliff, A. D., and J. K. Ord. (1981). Spatial Processes. Models and Applications. London: Pion Limited.Google Scholar
  5. Cressie, N. A. (1985). "Fitting Variogram Models by Weighted Least Squares," Mathematical Geology 17, 563-586.Google Scholar
  6. Cressie, N. A. (1993). Statistics for Spatial Data. Revised Edition. New York: Wiley.Google Scholar
  7. Dubin, R. A. (1988). "Spatial Autocorrelation: A Primer," Journal of Housing Economics 7, 304-327.Google Scholar
  8. Gelfand, A. E., S. K. Ghosh, J. R. Knight, and C. F. Sirmans. (1998) "Spatio-Temporal Modeling of Residential Sales Data," Journal of Business and Economic Statistics 16, 312-321.Google Scholar
  9. Griliches, Z. (1971). Price Indexes and Quality Change. Cambridge, MA: Harvard University Press.Google Scholar
  10. Kitanidis, P. K. (1983). "Statistical Estimation of Polynomial Generalized Covariance Functions and Hydrologic Applications," Water Resources Research 19, 909-921.Google Scholar
  11. Kitanidis, P. K. (1985). "Minimum Variance Unbiased Quadratic Estimation of Covariance of Regionalized Variables," Mathematical Geology 17, 195-208.Google Scholar
  12. Lancaster, K. J. (1966). "A New Approach to Consumer Theory," Journal of Political Economy 74, 132-157.Google Scholar
  13. Mardia, K. V., and R. J. Marshall. (1984). "Maximum Likelihood Estimation of Models for Residual Covariance in Spatial Regression," Biometrika 71, 135-146.Google Scholar
  14. Marshall, R. J., and K. V. Mardia. (1985). "Minimum Norm Quadratic Estimation of Components of Spatial Covariance," Mathematical Geology 17, 517-525.Google Scholar
  15. Matheron, G. (1963). "Principles of Geostatistics," Economic Geology 58, 1246-1266.Google Scholar
  16. Militino, A. F., and M. D. Ugarte. (2001). "Assessing the Covariance Function in Geostatistics," Statistics and Probability Letters 52, 199-206.Google Scholar
  17. Ord, K. (1975). "Estimation Methods for Models of Spatial Interaction," Journal of the American Statistical Association 70, 120-126.Google Scholar
  18. Pace, R. K., R. Barry, O. W. Gilley, and C. F. Sirmans. (2000). "A Method for Spatial-Temporal Forecasting with an Application to Real Estate Prices," International Journal of Forecasting 16, 229-246.Google Scholar
  19. Pinheiro, J. C., and D. M. Bates. (2000). Mixed-Effects Models in S and S-PLUS. New York: Springer.Google Scholar
  20. Ripley, B. D. (1981). Spatial Statistics. New York: Wiley.Google Scholar
  21. Rosen, S. (1974). "Hedonic Prices and Implicit Markets: Product Differentiation In Pure Competition," Journal of Political Economy 82, 34-55.Google Scholar
  22. Smirnov, O., and L. Anselin. (2001). "Fast Maximum Likelihood Estimation of Very Large Spatial Autoregressive Models: a Characteristic Polynomial Approach," Computational Statistics and Data Analysis 35, 301-319.Google Scholar
  23. S-Plus 4.5. (1996). Guide to Statistics. Data Analysis Products Division. Seattle: MathSoft.Google Scholar
  24. Tiefelsdorf, M. (2000). Modelling Spatial Processes. Berlin: Springer-Verlag.Google Scholar
  25. Verbeek, M. (2000). Modern Econometrics. New York: Wiley.Google Scholar
  26. Warnes, J. J., and B. D. Ripley. (1987). "Problems with Likelihood Estimation of Covariance Functions of Spatial Gaussian Processes," Biometrika 74, 640-642.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • A. F. Militino
    • 1
  • M. D. Ugarte
    • 1
  • L. García-Reinaldos
    • 1
  1. 1.Departamento de Estadística e Investigación OperativaUniversidad Pública de NavarraPamplonaSpain

Personalised recommendations