The Ramanujan Journal

, Volume 7, Issue 4, pp 485–517 | Cite as

Bosonic Formulas for (k, l)-Admissible Partitions

  • B. Feigin
  • M. Jimbo
  • S. Loktev
  • T. Miwa
  • E. Mukhin


Bosonic formulas for generating series of partitions with certain restrictions are obtained by solving a set of linear matrix q-difference equations. Some particular cases are related to combinatorial problems arising from solvable lattice models, representation theory and conformal field theory.

q-series difference equation admissible partitions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Baxter, Exactly Solved Models in Statistical Mechanics, Academic Press, London, 1982.Google Scholar
  2. 2.
    A. Berkovich, B. McCoy, and A. Schilling, “Rogers-Schur-Ramanujan type identities for the M(p, p') minimal models of conformal field theory,” Commun. Math. Phys. 191 (1998), 325–395.Google Scholar
  3. 3.
    B. Feigin, M. Jimbo, and T. Miwa, “Vertex operator algebra arising from the minimal series M(3, p) and monomial basis,” in MathPhys Odyssey 2001: Integrable Models and Beyond. In Honor of Barry M. McCoy (M. Kashiwara and T. Miwa, eds.), Birkhauser, Boston, 2002.Google Scholar
  4. 4.
    B. Feigin and S. Loktev, “On finitization of the Gordon identities,” math.QA/0006221.Google Scholar
  5. 5.
    B. Feigin and A. Stoyanovsky, “Quasi-particles models for the representations of Lie algebras and geometry of flag manifold, hep-th/9308079, RIMS 942; Functional models for the representations of current algebras and the semi-infinite Schubert cells,” Funct. Anal. Appl. 28 (1994), 55–72.Google Scholar
  6. 6.
    M. Jimbo, T. Miwa, and E. Mukhin, “Bosonic formula for sl 2 coinvariants, math. QA/0107053.Google Scholar
  7. 7.
    A. Pukhlikov and A. Khovanskii, “Finitely additive measures of virtual polytopes,” St. Petersburg Math J. 4 (1993), 337–356.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • B. Feigin
    • 1
  • M. Jimbo
    • 2
  • S. Loktev
    • 3
  • T. Miwa
    • 4
  • E. Mukhin
    • 5
  1. 1.Landau Institute for Theoretical PhysicsChernogolovkaRussia
  2. 2.Graduate School of Mathematical SciencesUniversity of TokyoTokyoJapan
  3. 3.Independent University of MoscowMoscow
  4. 4.Division of Mathematics, Graduate School of ScienceKyoto UniversityKyotoJapan
  5. 5.Department of MathematicsUniversity of CaliforniaBerkeley

Personalised recommendations