Photosynthesis Research

, Volume 80, Issue 1–3, pp 181–187 | Cite as

The FMO Protein

  • John M. Olson
Article

Abstract

In this article I review the history of research on the Fenna—Matthews—Olson (FMO) protein with emphasis on my contributions. The FMO protein, which transfers energy from the chlorosome to the reaction center in green sulfur bacteria, was discovered in 1962 and shown to contain bacteriochlorophyll a. From the absorption and circular dichroism spectra, it was clear that there was an exciton interaction between the bacteriochlorophyll molecules. Low temperature spectra indicated a seven-fold exciton splitting of the Qy band. The FMO protein was crystallized in 1964, and the X-ray structure determined in 1979 by B.W. Matthews, R.E. Fenna, M.C. Bolognesi, M.F. Schmidt and J.M. Olson. The structure showed that the protein consisted of three subunits, each containing seven bacteriochlorophyll molecules. The optical spectra were satisfactorily simulated in 1997. In living cells the FMO protein is located between the chlorosome and the reaction centers with the C3 symmetry axis perpendicular to the membrane. The FMO protein may be related to PscA in the reaction center.

Robert Blankenship Chlorobium (Cb.) limicola Cb. phaeovibrioides Cb. tepidum Cb. vibrioforma Patricia Cole Raymond Cox Roger Fenna David Filmer FMO protein green sulfur bacteria Bacon Ke, Brian Matthews Alexander Melkozernov Mette Miller Robert Pearlstein Prosthecochloris aestuarii Jason Raymond reaction center Carol Romano Frances Roskosky Kenneth Sauer Benno Schoenborn Christiaan Sybesma Philip Thornber William Whitten Geoffrey Zubay 

References

  1. Blankenship RE and Matsuura K (2003) Antenna complexes from green photosynthetic bacteria. In: Green BR and Parsons WW (eds) Light-Harvesting Antennas, pp 1–23. Kluwer Academic Publishers, Dordrecht, The NetherlandsGoogle Scholar
  2. Camara-Artigas A, Blankenship RE and Allen JP (2003) The structure of the FMO protein from Chlorobium tepidum at 2.2Å resolution. Photosynth Res 75: 49–55PubMedCrossRefGoogle Scholar
  3. Daurat-Larroque ST, Brew K and Fenna RE (1986) The complete amino acid sequence of a bacteriochlorophyll a-protein from Prosthecochloris aestuarii. J Biol Chem 261: 3607–3615PubMedGoogle Scholar
  4. Dracheva S, Williams JC and Blankenship RE (1992) Sequencing of the FMO-protein from Chlorobium tepidum. In: Murata N (ed) Research in Photosynthesis, Vol I, pp 53–56. Kluwer Academic Publishers, Dordrecht, The NetherlandsGoogle Scholar
  5. Fenna RE and Matthews BW (1975) Chlorophyll arrangement in a bacteriochlorophyll protein from Chlorobium limicola. Nature 258: 573–577CrossRefGoogle Scholar
  6. Fenna RE, Matthews BW, Olson JM and Shaw EK (1974) Structure of a bacteriochlorophyll-protein from the green photosynthetic bacterium Chlorobium limicola: crystallographic evidence for a trimer. J Mol Biol 84: 231–240PubMedCrossRefGoogle Scholar
  7. Francke C and Amesz J (1997) Isolation and pigment composition of the antenna system of four species of green sulfur bacteria. Photosynth Res 52: 137–146CrossRefGoogle Scholar
  8. Francke C, Otte SCM, Miller M, Amesz J and Olson JM (1996) Energy transfer from carotenoid and FMO-protein in subcellular preparations from green sulfur bacteria. Spectroscopic characterization of an FMO-reaction center core complex at low temperature. Photosynth Res 50: 71–77CrossRefGoogle Scholar
  9. Gülen D (1996) Interpretation of the excited-state structure of the Fenna—Matthews—Olson pigment protein complex of Prosthecochloris aestuarii based on the simultaneous simulation of the 4K absorption, linear dichroism, and singlet—triplet absorption difference spectra: a possible excitonic explanation? J Phys Chem 100: 17683–17689CrossRefGoogle Scholar
  10. Li Y-F, Zhou W, Blankenship RE and Allen JP (1997) Crystal structure of the bacteriochlorophyll a protein from Chlorobium tepidum. J Mol Biol 272: 1–16CrossRefGoogle Scholar
  11. Louwe RJW, Vrieze J and Aartsma TJ (1997a) Toward an integral interpretation of the optical steady-state spectra of the FMOcomplex of Prosthecochoris aestuarii. An investigation with linear-dichroic absorbance detected magnetic resonance. J Phys Chem B 101: 11273–11279CrossRefGoogle Scholar
  12. Louwe RJW, Vrieze J, Hoff AJ and Aartsma TJ (1997b)Toward an integral interpretation of the optical steady-state spectra of the FMO-complex of Prosthecochloris aestuarii. 2. Exciton simulations. J Phys Chem B 101: 11280–11287CrossRefGoogle Scholar
  13. Lu X and Pearlstein RM (1993) Simulations of Prosthecochloris bacteriochlorophyll a-protein optical spectra improved by parametric computer search. Photochem Photobiol 57: 86–91Google Scholar
  14. Matthews BW, Fenna RE, Bolognesi MC, Schmid MF and Olson JM (1979) Structure of a bacteriochlorophyll a-protein from the green photosynthetic bacterium Prosthecochloris aestuarii. J Mol Biol 131: 259–285PubMedCrossRefGoogle Scholar
  15. Melkozernov AN, Olson JM, Li Y-F, Allen JP and Blankenship RE (1998) Orientation and excitonic interactions of the Fenna— Matthews—Olson bacteriochlorophyll a protein in membranes of the green sulfur bacterium Chlorobium tepidum. Photosynth Res 56: 315–328CrossRefGoogle Scholar
  16. Miller M, Cox RP and Olson JM (1994) Low-temperature spectroscopy of isolated FMO-protein and a membrane-free reaction center complex from the green sulfur bacterium Chlorobium tepidum. Photosynth Res 41:97–103CrossRefGoogle Scholar
  17. Olson JM (1966) Chlorophyll-protein complexes. Part II. Complexes derived from green photosynthetic bacteria. In: Vernon LP and Seely GR (eds) The Chlorophylls, pp 423–425. Academic Press, New YorkGoogle Scholar
  18. Olson JM (1978) Bacteriochlorophyll a-proteins from green bacteria. In: Clayton RK and Sistrom WR (eds) The Photosynthetic Bacteria, pp 161–197. Plenum Press, NewYorkGoogle Scholar
  19. Olson JM (1980) Chlorophyll organization in green photosynthetic bacteria. Biochim Biophys Acta 594: 33–51PubMedGoogle Scholar
  20. Olson JM (1994) Reminiscence about 'Chloropseudomonas ethylicum' and the FMO-protein. Photosynth Res 41: 3–5CrossRefGoogle Scholar
  21. Olson JM and Raymond J (2003) The FMO protein is related to PscA in the reaction center of green sulfur bacteria. Photosynth Res 75: 277–285PubMedCrossRefGoogle Scholar
  22. Olson JM and Romano CA (1962) A new chlorophyll from green bacteria. Biochim Biophys Acta 59: 726–728PubMedCrossRefGoogle Scholar
  23. Olson JM, Filmer D, Radloff R, Romano CA and Sybesma C (1963) The protein-chlorophyll-770 complex from green bacteria. In: Gest H, San Pietro A and Vernon RP (eds) Bacterial Photosynthesis, pp 423–431. Antioch Press, Yellow Springs, OhioGoogle Scholar
  24. Olson JM, Koenig DF and Ledbetter MC (1969) A model of the bacteriochloropyll-protein from green photosynthetic bacteria. Arch Biochem Biophys 129: 42–48PubMedCrossRefGoogle Scholar
  25. Olson JM, Ke B and Thompson KH (1976) Exciton interaction among chlorophyll molecules in bacteriochlorophyll a proteins and bacteriochlorophyll a reaction center complexes from green bacteria. Biochim Biophys Acta 430: 524–537; errata, 440: 763PubMedCrossRefGoogle Scholar
  26. Olson RA, Jennings WH and Olson JM (1969) Chlorophyll orientation in crystals of bacteriochlorophyll-protein from green photosynthetic bacteria. Arch Biochem Biophys 129:30–41PubMedCrossRefGoogle Scholar
  27. Otte SCM, van der Heiden JC, Pfennig N and Amesz J (1991) A comparative study of the optical properties of intact cells of photosynthetic green sulfur bacteria containing bacteriochlorophyll c, d or e. Photosynth Res 28: 77–87Google Scholar
  28. Pearlstein RM (1992) Theory of the optical spectra of the bacteriochlorophyll a antenna protein trimer from Prosthecochloris aestuarii. Photosynth Res 31: 213–226CrossRefGoogle Scholar
  29. Pearlstein RM and Hemenger RP (1978) Bacteriochlorophyll electronic transition moment directions in bacteriochlorophll aprotein.Proc Natl Acad Sci USA 75: 4920–4924PubMedCrossRefGoogle Scholar
  30. Philipson KD and Sauer K (1972) Exciton interaction in a bacteriochlorophyll-protein from Chloropseudomonas ethylica. Absorption and circular dichroism at 77K. Biochemistry 11: 1880–1885PubMedCrossRefGoogle Scholar
  31. Remigy H-W, Stahlberg H, Wolpensinger B, Muller SA, Engel A, Hauska G and Tsiotis G (1999) The reaction center complex from the green sulfur bacterium C. tepidum: a structural analysis by scanning electron microscopy. J Mol Biol 290: 851–858PubMedCrossRefGoogle Scholar
  32. Remigy H-W, Hauska G, Muller SA and Tsiotis G (2002) The reaction centre from green sulphur bacteria: progress towards structural elucidation. Photosynth Res 71: 91–98PubMedCrossRefGoogle Scholar
  33. Swarthoff T and Amesz J (1979) Photochemically active pigmentprotein complexes from the green photosynthetic bacterium Prosthecochloris aestuarii. Biochim Biophys Acta 548: 427–432PubMedCrossRefGoogle Scholar
  34. Sybesma C and Olson JM (1963) Transfer of chlorophyll excitation energy in green photosynthetic bacteria. Proc Natl Acad Sci USA 49: 248–253PubMedCrossRefGoogle Scholar
  35. Thornber JP and Olson JM (1968) The chemical composition of a crystalline bacteriochlorophyll-protein complex isolated from the green bacterium, Chloropseudomonas ethylicum. Biochemistry 7: 2242–2249PubMedCrossRefGoogle Scholar
  36. Tronrud DE and Matthews BW (1993) Refinement of the structure of a water-soluble antenna complex from green photosynthetic bacteria by incorporation of the chemically determined amino acid sequence. In: Deisenhofer J and Norris J (eds) The Photosynthetic Reaction Center, Vol I, pp 13–21. Academic Press, San DiegoGoogle Scholar
  37. Tronrud DE, Schmid MF and Matthews BW (1986) Structure and X-ray amino acid sequence of a bacteriochlorophyll a protein from Prosthecochloris aestuarii refined at 1.9Å resolution. JMol Biol 188: 443–454CrossRefGoogle Scholar
  38. Vasmel H, Swarthoff T, Kramer HJM and Amesz J (1983) Isolation and properties of a pigment-protein complex associated with the reaction center of the green photosynthetic sulfur bacterium Prosthecochloris aestuarii. Biochim Biophys Acta 725: 361–367CrossRefGoogle Scholar
  39. Vulto SIE, de Baat MA, Louwe RJW, Permentier HP, Neef T, Miller M, van Amerongen H and Aartsma TJ (1998) Exciton simulations of optical spectra of the FMO complex from the green sulfur bacterium Chlorobium tepidum at 6K. J Phys Chem B 102: 9577–9582CrossRefGoogle Scholar
  40. Whitten WB, Pearlstein RM and Olson JM (1979) New spectral components in high resolution absorption spectra of green bacterial reaction center complexes at 5K. Photochem Photobiol 29: 823–828Google Scholar
  41. Whitten WB, Olson JM and Pearlstein RM (1980) Seven-fold exciton splittings of the 810-nm band in bacteriochlorophyll aproteins from green photosynthetic bacteria. Biochim Biophys Acta 591: 203–207PubMedCrossRefGoogle Scholar
  42. Zhou W, LoBrutto R, Lin S and Blankenship RE (1994) Redox effects of the bacteriochlorophyll a-containing Fenna—Matthews— Olson protein from Chlorobium tepidum. Photosynth Res 41: 89–96PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • John M. Olson
    • 1
  1. 1.Department of Biochemistry and Molecular Biology, Lederle Graduate Research CenterUniversity of MassachusettsAmherstUSA

Personalised recommendations