Photonic Network Communications

, Volume 8, Issue 2, pp 163–176 | Cite as

Scheduling Algorithms for a Slotted Packet Switch with either Fixed or Variable Length Packets

  • F. Callegati
  • W. Cerroni
  • G. Corazza
  • C. Develder
  • M. Pickavet
  • P. Demeester


We address the problem of congestion resolution in optical packet switching (OPS). We consider a fairly generic all-optical packet switch architecture with a feedback optical buffer constituted of fiber delay lines (FDL). Two alternatives of switching granularity are addressed for a switch operating in a slotted transfer mode: switching at the slot level (i.e., fixed length packets of a single slot) or at the burst level (variable length packets that are integer multiples of the slot length). For both cases, we show that in spite of the limited queuing resources, acceptable performance in terms of packet loss can be achieved for reasonable hardware resources with an appropriate design of the time/wavelength scheduling algorithms. Depending on the switching units (slots or bursts), an adapted scheduling algorithm needs to be deployed to exploit the bandwidth and buffer resources most efficiently.

IP-over-WDM optical packet switching optical packet router contention resolution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    C. Guillemot, et al., Transparent optical packet switching: The European ACTS KEOPS project approach, J. of Lightwave Techn., vol. 16, no. 12, (Dec. 1998), pp. 2117-2134.Google Scholar
  2. [2]
    D. K. Hunter, I. Andonovic, Approaches to optical internet packet switching, IEEE Comm. Magazine, vol. 38, no. 9, (Sept. 2000), pp. 116-122.Google Scholar
  3. [3]
    S. Yao, B. Mukherjee, S. Dixit, Advances in photonic packet-switching: An overview, IEEE Comm. Magazine, vol. 38, no. 2, (Feb. 2000), pp. 84-93.Google Scholar
  4. [4]
    D. Colle, et al., Porting MPLS-recovery techniques to the MPλS paradigm, Special Issue on “Protection and Survivability” of Optical Networks Magazine, vol. 2, no. 4, (July/Aug. 2001), pp. 29-47.Google Scholar
  5. [5]
    A. Bianco, E. Leonardi, M. Munafò, F. Neri, W. Picco, Design of optical packet switching networks, Proc. IEEE Global Telecommunications Conference (Globecom 2002), Taipei, Taiwan, vol. 3, (Nov. 2002), pp. 2752-2756.Google Scholar
  6. [6]
    B. Dagens, A. Labrousse, R. Brenot, B. Lavigne, M. Renaud, SOA-based devices for all-optical signal processing, Proc. Conf. on Optical fiber Communications (OFC 2003), Atlanta, GA, vol. 2, (March 2003), pp. 582-583.Google Scholar
  7. [7]
    A. Srivatsa, H. de Waardt, M. T. Hill, G. D. Khoe, H. J. S. Dorren, All-optical serial header processing based on two-pulse correlation, Electron. Lett., vol. 37, no. 4, (Feb. 2001), pp. 234-235.Google Scholar
  8. [8]
    N. Le Sauze, D. Chiaroni, O. Rofidal, A. Dupas, New optical packet synchronizer for optical packet routers, Proc. Photonics in Switching (PIS 2001), Monterey, CA (June 2001).Google Scholar
  9. [9]
    A. Bianco, G. Galante, E. Leonardi, F. Neri, M. Rundo, Access control protocols for interconnected WDM rings in the DAVID metro network, Proc. Tyrrhenian Intern. Workshop on Digital Communications (IWDC 2001), Taormina, Italy (Sept. 2001), pp. 38-55.Google Scholar
  10. [10]
    F. Masetti, et al., High speed, high capacity ATM optical switches for future telecommunication transport networks, IEEE J. Selected Areas in Commun., vol. 14, no. 5, (June 1996), pp. 979-998.Google Scholar
  11. [11]
    P. Gambini, Transparent optical packet switching: Network architecture and demonstrators in the KEOPS project, Invited paper, IEEE Journal of Selected Areas in Communications, vol. 16, no. 7, (Sept. 1998), pp. 1245-1259.Google Scholar
  12. [12]
    D. Wonglumson, I. M. White, S. M. Gemelos, K. Shirkande, L. G. Kazovsky, HORNET—3-A packet-switched WDM network: Optical packet transmission and recovery, IEEE Phot. Techn. Lett., vol. 11, no. 12, (Dec. 1999), pp. 1692-1694.Google Scholar
  13. [13]
    D. Hunter, et al., WASPNET: A wavelength switched packet network, IEEE Comm. Magazine, vol. 37, no. 3, (March 1999), pp. 120-129.Google Scholar
  14. [14]
    I. Chlamtac, et al., CORD: Contention resolution by delay lines, IEEE J. Selected Areas in Commun., vol. 14, no. 5, (June 1996), pp. 1014-1029.Google Scholar
  15. [15]
    D. Chiaroni, et al., First demonstration of an asynchronous optical packet switching matrix prototype for MultiTerabit-class routers/switches, in: Proceedings of 27th European Conference on Optical Communication (ECOC 2001), Amsterdam, The Netherlands (Oct. 2001), vol. 6, pp. 60-61.Google Scholar
  16. [16]
    N. Sahri, et al., A highly integrated 32-SOA gates optoelectronic module suitable for IP multi-terabit optical packet routers, Post-deadline paper, OFC 2001, Anaheim, CA (March 2001).Google Scholar
  17. [17]
    F. Masetti, et al., Design and implementation of a multi-terabit optical burst/packet router prototype, Postdeadline paper, OFC 2002, Anaheim, CA (March 2002).Google Scholar
  18. [18]
    F. Callegati, Optical buffers for variable length packets, IEEE Communications Letters, vol. 4, no. 9, (Sept. 2000), pp. 292-294.Google Scholar
  19. [19]
    C. Develder, et al., Node architectures for optical packet and burst switching, Proc. Int. Topical Meeting on Photonics in Switching (PS2002), (invited) paper PS.WeA1, Cheju Island, Korea (21–25 July 2002), pp. 104-106.Google Scholar
  20. [20]
    H. Christiansen, Using OPNET to compare and analyze different traffic-bundling schemes, Proceedings of OPNETWORK 2001, Washington, D.C., USA (Aug. 2001).Google Scholar
  21. [21]
    F. Callegati, H. C. Cankaya, Y. Xiong, M. Vandenhoute, Desing issues for optical IP routers, IEEE Comm. Magazine, vol. 37, no. 12, (Dec. 1999), pp. 124-128.Google Scholar
  22. [22]
    G. Bianchi, J. S. Turner, Improved queueing analysis of shared buffer switching networks, IEEE/ACM Transactions on Networking, vol. 1, no. 4, (Aug. 1993), pp. 482-490.Google Scholar
  23. [23]
    A. Monterosso, A. Pattavina, Performance analysis of multi-stage interconnection networks with shared-buffered switching elements for ATM switching, Proc. IEEE Infocom 1992, Florence, Italy, vol. 1, (May 1992), pp. 124-131.Google Scholar
  24. [24]
    M. G. Hluchyj, M. J. Karol, Queueing in high-performance packet switching, IEEE J. on Selected Areas in Commun., vol. 6, no. 9, (Dec. 1988), pp. 1587-1597.Google Scholar
  25. [25]
    Z. Haas, The “staggering switch”: An electronically controlled optical packet switch, J. Lightwave Technology, vol. 5, no. 5, (May–June 1993), pp. 925-936.Google Scholar
  26. [26]
    S. L. Danielsen, C. Joergensen, B. Mikkelsen, K. E. Stubkjaer, Analysis of a WDM packet switch with improved performance under bursty traffic conditions due to tuneable wavelength converters, J. Lightwave Technology, vol. 16, no. 5, (May 1998), pp. 729-735.Google Scholar
  27. [27]
    G. Shen, S. K. Bose, T. Hiang Cheng, C. Lu, T. Yoong Chai, Performance study on a WDM packet switch with limited-range wavelength converters, IEEE Commun. Letters, vol. 5, no. 10, (Oct. 2001), pp. 432-434.Google Scholar
  28. [28]
    H. Zang, J. P. Jue, B. Mukherjee, Photonic slot routing in all-optical WDM mesh networks, Proc. IEEE Global Telecommun. Conf. (Globecom 1999), Rio de Janeiro, Brazil, vol. 2, (Dec. 1999), pp. 1449-1453.Google Scholar
  29. [29]
    A. Kushwaha, S. K. Bose, Y. N. Singh, Analytical modeling for performance studies of an FLBM-based all-optical packet switch, IEEE Commun. Letters, vol. 5, no. 5, (May 2001), pp. 227-229.Google Scholar
  30. [30]
    P. D. Bergstrom Jr., M. A. Ingram, A. J. Vernon, J. L. A. Hughes, P. Tetali, A Markov chain model for an optical shared-memory packet switch, IEEE Trans. on Commun., vol. 47, no. 10, (Oct. 1999), pp. 1593-1603.Google Scholar
  31. [31]
    L. Tancevski, S. Yegnanarayanan, G. Castanon, L. Tamil, F. Masetti, T. McDermott, Optical routing of asynchronous, variable length packets, IEEE Journal on Selected Areas in Communications, vol. 18, no. 10, (Oct. 2000), pp. 2084-2093.Google Scholar
  32. [32]
    J. S. Turner, Terabit burst switching, J. High Speed Networks, vol. 8, no. 1, (Jan. 1999), pp. 3-16.Google Scholar
  33. [33]
    Y. Xiong, M. Vandenhoute, H. C. Cankaya, Control architecture in optical burst-switched WDM networks, IEEE J. on Selected Areas in Commun., vol. 18, no. 10, (Oct. 2000), pp. 1838-1851.Google Scholar
  34. [34]
    C. Gauger, Dimensioning of FDL buffers for optical burst switching nodes, Proc. Conference on Optical Network Design and Modeling (ONDM 2002), Torino, Italy (Feb. 2002), pp. 117-132.Google Scholar
  35. [35]
    K. Pawlikowski, H.-D. J. Jeong, J.-S. R. Lee, On credibility of simulation studies of telecommunication networks, IEEE Commun. Magazine, vol. 40, no. 1, (Jan. 2002), pp. 132-139.Google Scholar
  36. [36]
    F. Callegati, W. Cerroni, G. Corazza, Optimization of wavelength allocation in WDM optical buffers, Optical Networks Magazine, vol. 2, no. 6, (Nov. 2001), pp. 66-72.Google Scholar
  37. [37]
    W. Willinger, M. Taqqu, R. Sherman, D. Wilson, Self-similarity through high-variability: Statistical analysis of Ethernet LAN traffic at the source level, IEEE/ACM Trans. Networking, vol. 5, no. 1, (Jan. 1997), pp. 71-86.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • F. Callegati
    • 1
  • W. Cerroni
    • 1
  • G. Corazza
    • 1
  • C. Develder
    • 2
  • M. Pickavet
    • 2
  • P. Demeester
    • 2
  1. 1.Department of Electronics, Computer Science and Systems (DEIS)University of BolognaBolognaItaly
  2. 2.Department of Information Technology (INTEC)Ghent University—IMECGhentBelgium

Personalised recommendations