Plant Molecular Biology

, Volume 54, Issue 3, pp 325–334 | Cite as

Rice Mutant Resources for Gene Discovery

  • Hirohiko Hirochika
  • Emmanuel Guiderdoni
  • Gynheung An
  • Yue-ie Hsing
  • Moo Young Eun
  • Chang-deok Han
  • Narayana Upadhyaya
  • Srinivasan Ramachandran
  • Qifa Zhang
  • Andy Pereira
  • Venkatesan Sundaresan
  • Hei Leung


With the completion of genomic sequencing of rice, rice has been firmly established as a model organism for both basic and applied research. The next challenge is to uncover the functions of genes predicted by sequence analysis. Considering the amount of effort and the diversity of disciplines required for functional analyses, extensive international collaboration is needed for this next goal. The aims of this review are to summarize the current status of rice mutant resources, key tools for functional analysis of genes, and our perspectives on how to accelerate rice gene discovery through collaboration.

deletion mutants flanking sequence tag insertional mutants rice 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agrawal, G.K., Yamazaki, M., Kobayashi, M., Hirochika, R., Miyao, A. and Hirochika, H. 2001. Screening of the rice viviparous mutants generated by endogenous retrotransposon Tos17 insertion. Tagging of a zeaxanthin epoxidase gene and a novel OsTATC gene. Plant Physiol. 125: 1248-1257.CrossRefPubMedGoogle Scholar
  2. Alonso, J.M., Stepanova, A.N., Leisse, T.J., Kim, C.J., Chen, H., Shinn, P., Stevenson, D.K., Zimmerman, J., Barajas, P., Cheuk, R. et al. 2003. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301: 653-657.CrossRefPubMedGoogle Scholar
  3. An, S., Park, S., Jeong, D.-H., Lee, D.-Y., Kang, H.-G., Yu, J.-H., Hur, J., Kim, S.-R., Kim, Y.-H., Lee, M., Han, S., Kim, S.-J., Yang, J., Kim, E., Wi, S.J., Chung, H.S., Hong, J.-P., Choe, V., Lee, H.-K., Choi, J.-H., Nam, J., Kim, S.-R., Park, P.-B., Park, K.Y., Kim, W.T., Choe, S., Lee, C.-B. and An, G. 2003. Generation and analysis of end-sequence database for T-DNA tagging lines in rice. Plant Physiol. 133: 2040-2047.CrossRefPubMedGoogle Scholar
  4. Borevitz, J.O., Liang, D., Plouffe, D., Chang, H.S., Zhu, T., Weigel, D., Berry, C.C., Winzeler, E. and Chory, J. 2003. Large-scale identification of single-feature polymorphisms in complex genomes. Genome Res. 13: 513-523.CrossRefPubMedGoogle Scholar
  5. Chin, H.G., Choe, M.S., Lee, S.H., Park, S.H., Park, S.H., Koo, J.C., Kim, N.Y., Lee, J.J., Oh, B.G., Yi, G.H. et al. 1999. Molecular analysis of rice plants harboring an Ac/Ds transposable element-mediated gene trapping system. Plant J. 19: 615-623.CrossRefPubMedGoogle Scholar
  6. Colbert, T., Till, B.J., Tompa, R., Reynolds, S., Steine, M.N., Yeung, A.T., McCallum, C.M., Comai, L. and Henikoff, S. 2001. High-throughput screening for induced point mutations. Plant Physiol. 126: 480-484.CrossRefPubMedGoogle Scholar
  7. Delseney, M. 2003. Towards an accurate sequence of the rice genome. Curr. Opin. Plant Biol. 6: 101-105.CrossRefPubMedGoogle Scholar
  8. Eamens, A.L., Blachard, C.L., Ramm, K., Shivakkumar, R., Dennis, E.S. and Upadhyaya, N.M. in press. Dual orientation T-DNA/Ds gene traps for rice functional genomics. Mol. Genet. Genomics.Google Scholar
  9. Enoki, H., Izawa, T., Kawahara, M., Komatsu, M., Koh, S., Kyozuka, J. and Shimamoto, K. 1999. Ac as a tool for the functional genomics of rice. Plant J. 19: 605-613.CrossRefPubMedGoogle Scholar
  10. Feng, Q., Zhang, Y., Hao, P., Wang, S., Fu, G., Huang, Y., Li, Y., Zhu, J., Liu, Y., Hu, X. et al. 2002. Sequence and analysis of rice chromosome 4. Nature 420: 316-320.CrossRefPubMedGoogle Scholar
  11. Goff, S.A., Ricke, D., Lan, T.H., Presting, G., Wang, R., Dunn, M., Glazebrook, J., Sessions, A., Oeller, P., Varma, H. et al. 2002. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296: 92-100.CrossRefPubMedGoogle Scholar
  12. Greco, R., Ouwerkerk, P.B.F., Taal, A.J.C., Favalli, C., Beguiristain, T., Puigdomènech, P., Colombo, L., Hoge, J.H.C. and Pereira, A. 2001. Early and multiple Ac transpositions in rice generated by an adjacent strong enhancer. Plant Mol. Biol. 46: 215-227.CrossRefPubMedGoogle Scholar
  13. Greco, R., Ouwerkerk, P.B.F., de Kam, R.J., Sallaud, C., Favalli, C.L., Guiderdoni, E., Meijer, A.H., Hoge, J.H.C. and Pereira, A. 2003. Transpositional behaviour of an Ac/Ds system for reverse genetics in rice. Theor. Appl. Genet. 108: 10-24.CrossRefPubMedGoogle Scholar
  14. Hirochika, H. 2001. Contribution of the Tos17 retrotransposon to rice functional genomics. Curr. Opin. Plant Biol. 4: 118-122.CrossRefPubMedGoogle Scholar
  15. Izawa, T. and Shimamoto, K. 1999. Ac/Ds as tools for rice molecular biology. In: K. Shimamoto (Ed.), Molecular Biology of Rice, Springer-Verlag, Heidelberg/Berlin/New York, pp. 59-76.Google Scholar
  16. Izawa, T., Ohnishi, T., Nakano, T., Ishida, N., Enoki, H., Hashimoto, H., Itoh, K., Terada, R., Wu, C., Miyazaki, C. et al. 1997. Transposon tagging in rice. Plant Mol. Biol. 35: 219-229.CrossRefPubMedGoogle Scholar
  17. Jeon, J.S., Lee, S., Jung, K.H., Jun, S.H., Jeong, D.H., Lee, J., Kim, C., Jang, S., Yang, K., Nam, J. et al. 2000. T-DNA insertional mutagenesis for functional genomics in rice. Plant J. 22: 561-570.CrossRefPubMedGoogle Scholar
  18. Jeong, D.H., An, S., Kang, H.G., Moon, S., Han, J., Park, S., Lee, H.S., An, K. and An, G. 2002. T-DNA insertional mutagenesis for activation tagging in rice. Plant Physiol. 130: 1636-1644.CrossRefPubMedGoogle Scholar
  19. Kim, C.M., Je, BIl., Piao, H.L., Park, S.J., Kim, M.J., Park, S.H., Park, J.Y., Park, S.H., Lee, E.K., Chon, N.S., Won, Y.J., Lee, G.H., Nam, M.H., Yun, D.W., Lee, M.C., Cha, Y.S., Lee, K.H., Eun, M.Y. and Han, C.D. 2002. Reprogramming of the activity of the activator/dissociation transposon family during plant regeneration in rice. Mol. Cells 14: 231-237.PubMedGoogle Scholar
  20. Kolesnik, T., Szeverenyi, I., Bachmann, D., Kumar, C.S., Jiang, S., Ramamoorthy, R., Cai, M., Ma, Z.G., Sundaresan, V. and Ramachandran, S. 2004. Establishing an efficient Ac/Ds tagging system in rice: large-scale analysis of Ds flanking sequences. Plant J. 37: 301-314.PubMedGoogle Scholar
  21. Leung, H., Wu, C., Baraoidan, M., Bordeos, A., Ramos, M., Madamba, S., Cabauatan, P., Vera Cruz, C.M., Portugal, A., Reyes, G. et al. 2001. Deletion mutants for functional genomics: progress in phenotyping, sequence assignment, and database development. In: G.S. Khush, D.S. Brar and B. Hardy (Eds.), Rice Genetics IV, Science Publishers, New Delhi/International Rice Research Institute, Manila, pp. 239-251.Google Scholar
  22. Li, X., Song, Y., Century, K., Straight, S., Ronald, P., Dong, S., Lassner, M. and Zhang, Y. 2001. A fast neutron deletion mutagenesis-based reverse genetics system for plants. Plant J. 27: 235-242.CrossRefPubMedGoogle Scholar
  23. Liu, L.X., Spoerke, J.M., Mulligan, E.L., Chen, J., Reardon, B., Westlund, B., Sun, L., Abel, K., Armstrong, B., Hardiman, G. et al. 1999. High-throughput isolation of Caenorhabditis elegans deletion mutants. Genome Res. 9: 859-867.CrossRefPubMedGoogle Scholar
  24. Maes, T., De Keukeleire, P. and Gerats, T. 1999. Plant tagnology. Trends Plant Sci. 3: 90-96.CrossRefGoogle Scholar
  25. Manosalva, P., Ryba-White, M., Wu, C., Lei, C., Baraoidan, M., Leung, H. and Leach, J. 2003. A PCR-based screening strategy for detecting deletions in defense response genes in rice. Phytopathology 93: S57.Google Scholar
  26. Margis-Pnheiro, M., Zhou, X.-R., Zhu, Q.-H., Dennis, E.S. and Upadhyaya, N.M. in press. Isolation and characterization of a rice GA responsive dwarf mutant defective in an early step of the gibberellin biosynthesis pathway.Google Scholar
  27. Miyao, A., Tanaka, K., Murata, K., Sawaki, H., Takeda, S., Abe, K., Shinozuka, Y., Onosato, K. and Hirochika, H. 2003. Target site specificity of the Tos17 retrotransposon shows a preference for insertion within genes and against insertion in retrotransposon-rich regions of the genome. Plant Cell 15: 1771-1780.CrossRefPubMedGoogle Scholar
  28. Nakagawa, Y., Machida, C., Machida, Y. and Toriyama, K. 2000. Frequency and pattern of transposition of the maize transposable element Ds in transgenic rice plants. Plant Cell Physiol. 41: 733-742.PubMedGoogle Scholar
  29. Nonomura, K., Miyoshi, K., Eiguchi, M., Suzuki, T., Miyao, A., Hirochika, H. and Kurata, N. 2003. The MSP1 gene is necessary to restrict the number of cells entering into male and female sporogenesis and to initiate anther wall formation in rice. Plant Cell 15: 1728-1739.CrossRefPubMedGoogle Scholar
  30. Sallaud, C., Gay, C., Larmande, P., Bès, M., Pié gu, B., Regad, F., Vignes, H., Venturoli, F., Cobo, S., Crouzet, M.P., Rio, M.A., Portefaix, M., Mathieu, T., Hémery, C., Chaine, C., Sabau, X., Bourgeois, E., Ghesquière, A., Delseny, M. and Guiderdoni, E. in press. High throughput T-DNA insertion mutagenesis in rice: a first step towards in silico reverse genetics. Plant J.Google Scholar
  31. Sasaki, T. and Burr, B. 2000. International Rice Genome Sequencing Project: the effort to completely sequence the rice genome. Curr. Opin. Plant Biol. 3: 138-141.CrossRefPubMedGoogle Scholar
  32. Sasaki, T. and Sederoff, R.R. 2003. Genome studies and molecular genetics. The rice genome and comprehensive genomics of higher plants. Curr. Opin. Plant Biol. 6: 97-100.CrossRefGoogle Scholar
  33. Sasaki, T., Matsumoto, T., Yamamoto, K., Sakata, K., Baba, T., Katayose, Y., Wu, J., Niimura, Y., Cheng, Z., Nagamura, Y. et al. 2002. The genome sequence and structure of rice chromosome 1. Nature 420: 312-316.CrossRefPubMedGoogle Scholar
  34. Sato, Y., Sentoku, N., Miura, Y., Hirochika, H., Kitano, H. and Matsuoka, M. 1999. Loss-of-function mutations in the rice homeobox gene OSH15 affect the architecture of internodes resulting in dwarf plants. EMBO J. 18: 992-1002.CrossRefPubMedGoogle Scholar
  35. Scholl, R.L., May, S.T. and Ware, D.H. 2000. Seed and molecular resources for Arabidopsis. Plant Physiol. 124: 1477-1480.CrossRefPubMedGoogle Scholar
  36. Tanaka, K., Murata, K.Y., Onosato, K., Miyao, A. and Hirochika, H. 2003. Three distinct rice cellulose synthase catalytic subunit genes required for cellulose synthesis in the secondary wall. Plant Physiol. 133: 73-83.CrossRefPubMedGoogle Scholar
  37. Till, B.J., Reynolds, S.H., Greene, E.A., Codomo, C.A., Enns, L.C., Johnson, J.E., Burtner, A.R., Young, K., Taylor, N.E., Henikoff, J.G. et al. 2003. Large-scale discovery of induced point-mutations with high-throughput TILLING. Genome Res. 13: 524-530.CrossRefPubMedGoogle Scholar
  38. Upadhyaya, N.M., Zhou, X.-R., Zhu, Q.-H., Ramm, K., Wu, L., Eamens, A., Sivakumar, R., Kato, T., Yun, D.-W., Santhoshkumar, C., Narayanan, K.K., Peacock, J.W. and Dennis, E.S. 2002. An iAc/Ds gene and enhancer trapping system for insertional mutagenesis in rice. Funct. Plant Biol. 29: 547-559.Google Scholar
  39. Wu, C., Li, X., Yua n., W, Chen, G., Kilian, A., Li, J., Xu, C., Li, X., Zhou, D-X., Wang, S. and Zhang, Q. 2003. Development of enhancer trap lines for functional analysis of the rice genome. Plant J. 35: 418-427.CrossRefPubMedGoogle Scholar
  40. Yu, J., Hu, S.-N., Wang, J., Wong, G.K.-S., Li, S.-G., Liu, B., Deng, Y.-J., Deng, Y.-J., Dai, L., Zhou et al. 2002. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296: 79-91.CrossRefPubMedGoogle Scholar
  41. Zhu, Q.-H., Hoque, M.S., Dennis, E.S. and Upadhyaya, N.M. 2003. Isolation and characterization of a Ds transposon tagged rice (Oryza sativa L.) mutant defective in anther dehiscence. BMC Plant Biol. 3: 6.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Hirohiko Hirochika
    • 1
  • Emmanuel Guiderdoni
    • 2
  • Gynheung An
    • 3
  • Yue-ie Hsing
    • 4
  • Moo Young Eun
    • 5
  • Chang-deok Han
    • 6
  • Narayana Upadhyaya
    • 7
  • Srinivasan Ramachandran
    • 8
  • Qifa Zhang
    • 9
  • Andy Pereira
    • 10
  • Venkatesan Sundaresan
    • 11
  • Hei Leung
    • 12
  1. 1.Molecular Genetics DepartmentNational Institute of Agrobiological SciencesTsukuba CityJapan
  2. 2.2CIRADFrance
  3. 3.Department of Life Science and National Research Laboratory of Plant Functional GenomicsPohang University of Science and TechnologyPohangSouth Korea
  4. 4.Academia Sinica, Institute of BotanyTaipeiTaiwan
  5. 5.Genomics Division, National Institute of Agricultural BiotechnologyRural Development AdministrationSuweonSouth Korea
  6. 6.Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuSouth Korea
  7. 7.CSIRO Plant IndustryCanberraAustralia
  8. 8.Temasek Life Sciences Laboratory, 1, Research LinkNational University of SingaporeSingaporeSingapore
  9. 9.National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
  10. 10.Plant Research InternationalNetherlands
  11. 11.Plant Biology and Agronomy, LSA 1002University of CaliforniaDavisUSA
  12. 12.International Rice Research InstituteMetro ManilaPhilippines

Personalised recommendations