Plant Molecular Biology

, Volume 53, Issue 1–2, pp 247–259 | Cite as

An Arabidopsis thaliana T-DNA mutagenized population (GABI-Kat) for flanking sequence tag-based reverse genetics

  • Mario G. Rosso
  • Yong Li
  • Nicolai Strizhov
  • Bernd Reiss
  • Koen Dekker
  • Bernd WeisshaarEmail author


The GABI-Kat population of T-DNA mutagenized Arabidopsis thaliana lines with sequence-characterized insertion sites is used extensively for efficient progress in plant functional genomics. Here we provide details about the establishment of the material, demonstrate the population's functionality and discuss results from quality control studies. T-DNA insertion mutants of the accession Columbia (Col-0) were created by Agrobacterium tumefaciens-mediated transformation. To allow selection of transformed plants under greenhouse conditions, a sulfadiazine resistance marker was employed. DNA from leaves of T1 plants was extracted and used as a template for PCR-based amplification of DNA fragments spanning insertion site borders. After sequencing, the data were placed in a flanking sequence tag (FST) database describing which mutant allele was present in which line. Analysis of the distribution of T-DNA insertions revealed a clear bias towards intergenic regions. Insertion sites appeared more frequent in regions in front of the ATG and after STOP codons of predicted genes. Segregation analysis for sulfadiazine resistance showed that 62% of the transformants contain an insertion at only one genetic locus. In quality control studies with gene-specific primers in combination with T-DNA primers, 76% of insertions could be confirmed. Finally, the functionality of the GABI-Kat population was demonstrated by exemplary confirmation of several new transparent testa alleles, as well as a number of other mutants, which were identified on the basis of the FST data.

FST gene function insertion mutagenesis knock-out reverse genetics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alonso, J.M., Stepanova, A.N., Leisse, T.J., Kim, C.J., Chen, H., Shinn, P., Stevenson, D.K., Zimmerman, J., Barajas, P., Cheuk, R., Gadrinab, C., Heller, C., Jeske, A., Koesema, E., Meyers, C.C., Parker, H., Prednis, L., Ansari, Y., Choy, N., Deen, H., Geralt, M., Hazari, N., Hom, E., Karnes, M., Mulholland, C., Ndubaku, R., Schmidt, I., Guzman, P., Aguilar-Henonin, L., Schmid, M., Weigel, D., Carter, D.E., Marchand, T., Risseeuw, E., Brogden, D., Zeko, A., Crosby, W.L., Berry, C.C. and Ecker, J.R. 2003. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301: 653–657.Google Scholar
  2. Aarts, M.G., Keijzer, C.J., Stiekema, W.J. and Pereira, A. 1995. Molecular characterization of the CER1 gene of Arabidopsis involved in epicuticular wax biosynthesis and pollen fertility. Plant Cell 7: 2115–2127.Google Scholar
  3. Arabidopsis Genome Initiative. 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408(6814): 796–815.Google Scholar
  4. Azpiroz-Leehan, R. and Feldmann, K.A. 1997. T-DNA insertion mutagenesis in Arabidopsis: going back and forth. Trends Genet. 13: 152–156.Google Scholar
  5. Balzergue, S., Dubreucq, B., Chauvin, S., Le-Clainche, I., Le Boulaire, F., de Rose, R., Samson, F., Biaudet, V., Lecharny, A., Cruaud, C., Weissenbach, J., Caboche, M. and Lepiniec, L. 2001. Improved PCR-walking for large-scale isolation of plant T-DNA borders. BioTechniques 30: 496–504.Google Scholar
  6. Bechtold, N. and Pelletier, G. 1998. In planta Agrobacterium mediated transformation of adult Arabidopsis thaliana plants by vacuum infiltration. Meth. Mol. Biol. 82: 259–266.Google Scholar
  7. Bouchez, D. and Höfte, H. 1998. Functional genomics in plants. Plant Physiol. 118: 725–732.Google Scholar
  8. Brunaud, V., Balzergue, S., Dubreucq, B., Aubourg, S., Samson, F., Chauvin, S., Bechtold, N., Cruaud, C., DeRose, R., Pelletier, G., Lepiniec, L., Caboche, M. and Lecharny, A. 2002. T-DNA integration into the Arabidopsis genome depends on sequences of pre-insertion sites. EMBO Rep. 3: 1152–1157.Google Scholar
  9. Burbulis, I.E. and Winkel-Shirley, B. 1999. Interactions among enzymes of the Arabidopsis flavonoid biosynthetic pathway. Proc. Natl. Acad. Sci. USA 96: 12929–12934.Google Scholar
  10. Chaves, L.A., Vergara, C.E. and Mayer, J.E. 1995. Dichloromethane as an economic alternative to chloroform in the extraction of DNA from plant tissues. Plant Mol. Biol. Rep. 13(1): 18–25.Google Scholar
  11. Chen, X., Goodwin, S.M., Boroff, V.L., Liu, X. and Jenks, M.A. 2003. Cloning and characterization of the WAX2 gene of Arabidopsis involved in cuticle membrane and wax production. Plant Cell 15: 1170–1185.Google Scholar
  12. Chory, J., Ecker, J.R., Briggs, S., Caboche, M., Coruzzi, G.M., Cook, D., Dangl, J.L., Grant, S., Guerinot, M.L., Henikoff, S., Martienssen, R.A., Okada, K., Raikhel, N., Somerville, C.R. and Weigel, D. 2000. National Science Foundation-Sponsored Workshop Report: 'The 2010 Project' functional genomics and the virtual plant. A blueprint for understanding how plants are built and how to improve them. Plant Physiol. 123: 423–426.Google Scholar
  13. Clough, S.J. and Bent, A.F. 1998 Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16: 735–743.Google Scholar
  14. Corbesier, L., Gadisseur, I., Silvestre, G., Jacqmard, A. and Bernier, G. 1996. Design in Arabidopsis thaliana of a synchronous system of floral induction by one long day. Plant J. 9: 947–952.Google Scholar
  15. Dellaporta, S.L., Wood, J. and Hicks, J.B. 1983. A plant DNA minipreparation: Version II. Plant Mol. Biol. Rep. 1: 19–21.Google Scholar
  16. Devic, M., Albert, S., Delseny, M. and Roscoe, T.J. 1997. Efficient PCR walking on plant genomic DNA. Plant Physiol. Biochem. 35: 331–339.Google Scholar
  17. Fletcher, J.C. 2002. Shoot and floral meristem maintenance in Arabidopsis. Annu. Rev. Plant Biol. 53: 45–66.Google Scholar
  18. Guerineau, F., Brooks, L., Meadows, J., Lucy, A., Robinson, C. and Mullineaux, P. 1990. Sulfonamide resistance gene for plant transformation. Plant Mol. Biol. 15: 127–136.Google Scholar
  19. Hadi, M.Z., Kemper, E., Wendeler, E. and Reiss, B. 2002. Simple and versatile selection of Arabidopsis transformants. Plant Cell Rep. 21: 130–135.Google Scholar
  20. Hansen, J.D., Pyee, J., Xia, Y., Wen, T.J., Robertson, D.S., Kolattukudy, P.E., Nikolau, B.J. and Schnable, P.S. 1997. The glossy1 locus of maize and an epidermis-specific cDNA from Kleinia odora define a class of receptor-like proteins required for the normal accumulation of cuticular waxes. Plant Physiol. 113: 1091–1100.Google Scholar
  21. Hood, E.E., Gelvin, S.B., Melchers, L.S. and Hoekema, A. 1993. New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res. 2: 208–218.Google Scholar
  22. Jobes, D.V., Hurley, D.L. and Thien, L.B. 1995. Plant DNA isolation: a method to efficiently remove polyphenolics, polysaccharides and RNA. Taxon 44: 379–386.Google Scholar
  23. Koncz, C., Nemeth, K., Redei, G.P. and Schell, J. 1992. T-DNA insertional mutagenesis in Arabidopsis. Plant Mol Biol. 20: 963–976.Google Scholar
  24. Krysan, P.J., Young, J.C., Jester, P.J., Monson, S., Copenhaver, G., Preuss, D. and Sussman, M.R. 2002. Characterization of T-DNA insertion sites in Arabidopsis thaliana and the implications for saturation mutagenesis. Omics 6: 163–174.Google Scholar
  25. Krysan, P.J., Young, J.C. and Sussman, M.R. 1999. T-DNA as an insertional mutagen in Arabidopsis. Plant Cell 11: 2283–2290.Google Scholar
  26. Larsson, A.S., Landberg, K. and Meeks-Wagner, D.R. 1998. The TERMINAL FLOWER2 (TFL2) gene controls the reproductive transition and meristem identity in Arabidopsis thaliana. Genetics 149: 597–605.Google Scholar
  27. Li, Y., Rosso, M.G., Strizhov, N., Viehoever, P. and Weisshaar, B. 2003. GABI-Kat SimpleSearch: a flanking sequence tag (FST) database for the identification of T-DNA insertion mutants in Arabidopsis thaliana. Bioinformatics 19: 1441–1442.Google Scholar
  28. Meinke, D.W., Meinke, L.K., Showalter, T.C., Schissel, A.M., Mueller, L.A. and Tzafrir, I. 2003. A sequence-based map of Arabidopsis genes with mutant phenotypes. Plant Physiol. 131: 409–418.Google Scholar
  29. Parinov, S., Sevugan, M., Ye, D., Yang, W.C., Kumaran, M. and Sundaresan, V. 1999. Analysis of flanking sequences from Dissociation insertion lines: a database for reverse genetics in Arabidopsis. Plant Cell 11: 2263–2270.Google Scholar
  30. Rios, G., Lossow, A., Hertel, B., Breuer, F., Schaefer, S., Broich, M., Kleinow, T., Jasik, J., Winter, J., Ferrando, A., Farras, R., Panicot, M., Henriques, R., Mariaux, J.B., Oberschall, A., Molnar, G., Berendzen, K., Shukla, V., Lafos, M., Koncz, Z., Redei, G.P., Schell, J. and Koncz, C. 2002. Rapid identification of Arabidopsis insertion mutants by non-radioactive detection of T-DNA tagged genes. Plant J. 32: 243–253.Google Scholar
  31. Sambrook, J., Fritsch, E.F. and Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Plainview, NY.Google Scholar
  32. Samson, F., Brunaud, V., Balzergue, S., Dubreucq, B., Lepiniec, L., Pelletier, G., Caboche, M. and Lecharny, A. 2002. FLAGdb/FST: a database of mapped flanking insertion sites (FSTs) of Arabidopsis thaliana T-DNA transformants. Nucl. Acids Res. 30: 94–97.Google Scholar
  33. Schoof, H., Zaccaria, P., Gundlach, H., Lemcke, K., Rudd, S., Kolesov, G., Arnold, R., Mewes, H.W. and Mayer, K.F. 2002. MIPS Arabidopsis thaliana Database (MAtDB): an integrated biological knowledge resource based on the first complete plant genome. Nucl. Acids Res. 30: 91–93.Google Scholar
  34. Sessions, A., Burke, E., Presting, G., Aux, G., McElver, J., Patton, D., Dietrich, B., Ho, P., Bacwaden, J., Ko, C., Clarke, J.D., Cotton, D., Bullis, D., Snell, J., Miguel, T., Hutchison, D., Kimmerly, B., Mitzel, T., Katagiri, F., Glazebrook, J., Law, M. and Goff, S.A. 2002. A high-throughput Arabidopsis reverse genetics system. Plant Cell 14: 2985–2994.Google Scholar
  35. Somerville, C.R. and Dangl, J.L. 2000. Genomics. Plant biology in 2010. Science 290(5499): 2077–2078.Google Scholar
  36. Spertini, D., Beliveau, C. and Bellemare, G. 1999. Screening of transgenic plants by amplification of unknown genomic DNA flanking T-DNA. BioTechniques 27: 308–314.Google Scholar
  37. Speulman, E., Metz, P.L., van Arkel, G., te Lintel Hekkert, B., Stiekema, W.J. and Pereira, A. 1999. A two-component enhancer-inhibitor transposon mutagenesis system for functional analysis of the Arabidopsis genome. Plant Cell 11: 1853–1866.Google Scholar
  38. Steiner-Lange, S., Gremse, M., Kuckenberg, M., Nissing, E., Schachtele, D., Spenrath, N., Wolff, M., Saedler, H. and Dekker, K. 2001. Efficient identification of Arabidopsis knock-out mutants using DNA-arrays of transposon flanking sequences. Plant Biol. 3: 391–397.Google Scholar
  39. Strizhov, N., Li, Y., Rosso, M.G., Viehoever, P., Dekker, K.A. and Weisshaar, B. 2003. High-throughput generation of sequence indexes from T-DNA mutagenized Arabidopsis thaliana lines. BioTechniques 35 (December), in press.Google Scholar
  40. Szabados, L., Kovacs, I., Oberschall, A., Abraham, E., Kerekes, I., Zsigmond, L., Nagy, R., Alvarado, M., Krasovskaja, I., Gal, M., Berente, A., Redei, G., Ab, H. and Koncz, C. 2002. Distribution of 1000 sequenced T-DNA tags in the Arabidopsis genome. Plant J. 32: 233–242.Google Scholar
  41. Tinland, B. 1996. The integration of T-DNA into plant genomes. Trends Plant Sci. 1(6): 178–184.Google Scholar
  42. Tissier, A.F., Marillonnet, S., Klimyuk, V., Patel, K., Torres, M.A., Murphy, G. and Jones, J.D. 1999. Multiple independent defective suppressor-mutator transposon insertions in Arabidopsis: a tool for functional genomics. Plant Cell 11: 1841–1852.Google Scholar
  43. Velten, J., Velten, L., Hain, R. and Schell, J. 1984. Isolation of a dual plant promoter fragment from the Ti plasmid of Agrobacterium tumefaciens. EMBO J. 3: 2723–2730.Google Scholar
  44. Winkel-Shirley, B. 2001. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell Biology, and biotechnology. Plant Physiol. 126: 485–493.Google Scholar
  45. Wisman, E., Hartmann, U., Sagasser, M., Baumann, E., Palme, K., Hahlbrock, K., Saedler, H. and Weisshaar, B. 1998. Knock-out mutants from an En-1 mutagenized Arabidopsis thaliana population generate new phenylpropanoid biosynthesis phenotypes. Proc. Natl. Acad. Sci. USA 95: 12432–12437.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Mario G. Rosso
    • 1
  • Yong Li
    • 1
  • Nicolai Strizhov
    • 2
  • Bernd Reiss
    • 1
  • Koen Dekker
    • 1
  • Bernd Weisshaar
    • 3
    Email author
  1. 1.GABI-Kat, Max Planck Institute for Plant Breeding ResearchKölnGermany
  2. 2.Max Planck Unit for Structural Molecular BiologyHamburgGermany
  3. 3.Institute for Genome ResearchBielefeld UniversityBielefeldGermany

Personalised recommendations