Advertisement

Plant Molecular Biology

, Volume 53, Issue 1–2, pp 175–188 | Cite as

Bifunctional aldehyde/alcohol dehydrogenase (ADHE) in chlorophyte algal mitochondria

  • Ariane Atteia
  • Robert van Lis
  • Guillermo Mendoza-Hernández
  • Katrin Henze
  • William Martin
  • Hector Riveros-Rosas
  • Diego González-Halphen
Article

Abstract

Protein profiles of mitochondria isolated from the heterotrophic chlorophyte Polytomella sp. grown on ethanol at pH 6.0 and pH 3.7 were analyzed by Blue Native and denaturing polyacrylamide gel electrophoresis. Steady-state levels of oxidative phosphorylation complexes were influenced by external pH. Levels of an abundant, soluble, mitochondrial protein of 85 kDa and its corresponding mRNA increased at pH 6.0 relative to pH 3.7. N-terminal and internal sequencing of the 85 kDa mitochondrial protein together with the corresponding cDNA identified it as a bifunctional aldehyde/alcohol dehydrogenase (ADHE) with strong similarity to homologues from eubacteria and amitochondriate protists. A mitochondrial targeting sequence of 27 amino acids precedes the N-terminus of the mature mitochondrial protein. A gene encoding an ADHE homologue was also identified in the genome of Chlamydomonas reinhardtii, a photosynthetic relative of Polytomella. ADHE reveals a complex picture of sequence similarity among homologues. The lack of ADHE from archaebacteria indicates a eubacterial origin for the eukaryotic enzyme. Among eukaryotes, ADHE has hitherto been characteristic of anaerobes since it is essential to cytosolic energy metabolism of amitochondriate protists such as Giardia intestinalis and Entamoeba histolytica. Its abundance and expression pattern suggest an important role for ADHE in mitochondrial metabolism of Polytomella under the conditions studied. The current data are compatible with the view that Polytomella ADHE could be involved either in ethanol production or assimilation, or both, depending upon environmental conditions. Presence of ADHE in an oxygen-respiring algal mitochondrion and co-expression at ambient oxygen levels with respiratory chain components is unexpected with respect to the view that eukaryotes acquired ADHE genes specifically as an adaptation to an anaerobic lifestyle.

chlorophytes evolution OXPHOS complexes pH regulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akhmanova, A., Voncken, F.G.J., Hosea, K.M., Harhangi, H., Keltjens, J.T., den Camp, H., Vogels, G.D. and Hackstein, J.H.P. 1999. A hydrogenosome with pyruvate formate-lyase: anaerobic chytrid fungi use an alternative route for pyruvate catabolism. Mol. Microbiol. 32: 1103–1114.Google Scholar
  2. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D.J. 1997. Gapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucl. Acids Res. 25: 3389–3402.Google Scholar
  3. Andersson, J.M., Sjögren, A.M., Davis, L.A.M., Embley, T.M. and Roger, A.J. 2003. Phylogenetic analyses of diplomonad genes reveal frequent lateral gene transfers affecting eukaryotes. Curr. Biol. 13: 94–104.Google Scholar
  4. Atteia, A., Dreyfus, G. and González-Halphen, D. 1997. Characterization of the a and b subunits of the F0F1-ATPase from the alga Polytomella spp., a close relative of Chlamydomonas reinhardtii. Biochim. Biophys. Acta 1320: 275–284.Google Scholar
  5. Atteia, A., van Lis, R., Ramírez, J. and González-Halphen, D. 2000. Polytomella spp. growth on ethanol. Extracellular pH affects the accumulation of mitochondrial cytochrome c550. Eur. J. Biochem. 267: 2850–2858.Google Scholar
  6. Bairoch, A. and Apweiler, R. 2000. The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucl. Acids Res. 28: 45–48.Google Scholar
  7. Bastolla, U., Porto, M., Roman, H.E. and Vendruscolo, M.H. 2002, Lack of self-averaging in neutral evolution of proteins. Phys. Rev. Lett. 89 (20) 208–101.Google Scholar
  8. Bastolla, U., Porto, M., Roman, H.E. and Vendruscolo, M.H. 2003. Connectivity of neutral networks, overdispersion, and structural conservation in protein evolution. J. Mol. Evol. 56: 243–254.Google Scholar
  9. Benson, D.A., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., Rapp, B.A. and Wheeler, D.L. 2000. GenBank. Nucl. Acids Res. 28: 15–18.Google Scholar
  10. Bjellqvist, B., Basse, B., Olsen, E. and Celis, J.E. 1994. Reference points for comparisons of two-dimensional maps of proteins from different human cell types defined in a pH scale where isoelectric points correlate with polypeptide compositions. Electrophoresis 15: 529–539.Google Scholar
  11. Bruchhaus, I. and Tannich, E. 1994. Purification and molecular characterization of the NAD+-dependent acetaldehyde/alcohol dehydrogenase from Entamoeba histolytica. Biochem. J. 303: 743–748.Google Scholar
  12. Bryant, D. and Moulton, V. 2002. NeighborNet: an agglomerative method for the construction of planar phylogenetic networks. In: WABI 2002, LNCS 2452, Springer-Verlag, Berlin/ Heidelberh/New York, pp. 375–391.Google Scholar
  13. Cabiscol, E., Aguilar, J. and Ros, J. 1994. Metal-catalyzed oxidation of Fe2+ dehydrogenases. Consensus target sequence between propanediol oxidoreductase of Escherichia coli and alcohol dehydrogenase II of Zymomonas mobilis. J. Biol. Chem. 269: 6592–6597.Google Scholar
  14. Carroll, J., Shannon, R.J., Fearnley, I.M., Walker, J.E. and Hirst, J. 2002. Definition of the nuclear encoded protein composition of bovine heart mitochondrial complex I. Identification of two new subunits. J. Biol. Chem. 277: 50311–50317.Google Scholar
  15. Clark, D.P. and Cronan, J.E. 1980. Acetaldehyde coenzyme A dehydrogenase of Escherichia coli. J. Bact. 144: 179–184.Google Scholar
  16. Claros, M.G. and Vincens, P. 1996. Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur. J. Biochem. 241: 779–786.Google Scholar
  17. Conner, T.W., Thompson, M.D. and Silflow, C.D. 1989. Structure of the three β-tubulin-encoding genes of the unicellular alga, Polytomella agilis. Gene 84: 345–358.Google Scholar
  18. Emanuelsson, O., Nielsen, H., Brunak, S. and von Heijne, G. 2000. Predicting subcellular localization of proteins based on their Nterminal amino acid sequence. J. Mol. Biol. 300: 1005–1016.Google Scholar
  19. Field, J., Rosenthal, B. and Samuelson, J. 2000. Early lateral transfer of genes encoding malic enzyme, acetyl-CoA synthetase and alcohol dehydrogenases from anaerobic prokaryotes to Entamoeba histolytica. Mol. Microbiol. 38: 446–455.Google Scholar
  20. Fontaine, L., Meynial-Salles, I., Girbal, L., Yang, X., Croux, C. and Soucaille, P. 2002. Molecular characterization and transcriptional analysis of adhE2, the gene encoding the NADH-dependent aldehyde/alcohol dehydrogenase responsible for butanol production in alcohologenic cultures of Clostridium acetobutylicum ATCC 824. J. Bact. 184: 821–830.Google Scholar
  21. Goodlove, P.E., Cunningham, P.R., Parker, J. and Clark, D. P. 1989. Cloning and sequencing of the fermentative alcoholdehydrogenase-encoding gene of Escherichia coli. Gene 85: 209–214.Google Scholar
  22. Hackstein, J.H.P., Akhmanova, A., Boxma, B., Harhangi, H.R. and Voncken, F.G.J. 1999. Hydrogenosomes: eukaryotic adaptations to anaerobic environments. Trends Microbiol. 7: 441–447.Google Scholar
  23. Holland-Staley, C.A., Lee, K., Clark, J.P. and Cunningham, P.R. 2000. Aerobic activity of Escherichia coli alcohol dehydeorgenase is determined by a single amino acid. J. Bact. 182: 6049–6054.Google Scholar
  24. Huson, D.H. 1998. SplitsTree: analyzing and visualizing evolutionary data. Bioinformatics 14: 68–73.Google Scholar
  25. Jänsch L., Kruft, V., Schmitz U.K. and Braun, H.P. 1996. New insights into the composition, molecular mass and stoichiometry of the protein complexes of plant mitochondria. Plant J. 9: 357–368.Google Scholar
  26. Kessler, D., Leibrecht, I. and Knappe, J. 1991. Pyruvate-formatelyase-deactivase and acetyl CoA reductase activities of Escherichia coli reside on a polymeric protein particle encoded by adhE. FEBS Lett. 281: 59–63.Google Scholar
  27. Kofoid, E., Rappleye, C., Stojiljkovic, I. and Roth, J. 1999. The 17-gene ethanolamine (eut) operon of Salmonella typhimurium encodes five homologues of carboxysome shell proteins. J. Bact. 181: 5317–5329.Google Scholar
  28. Kreuzberg, K. 1984. Starch fermentation via formate producing pathway in Chlamydomonas reinhardtii, Chlorogonium elongatum and Chlorella fusca. Physiol. Plant. 61: 87–94.Google Scholar
  29. Kreuzberg, K. 1985. Pyruvate degradation via pyruvate formatelyase (EC 2.3.1.54) and the enzymes of formate fermentation in the green alga Chlorogonium elongatum. Planta 163: 60–67.Google Scholar
  30. Kreuzberg, K., Klöch, G. and Grossheiser, D. 1987. Subcellular distribution of pyruvatedegrading enzymes in Chlamydomonas reinhardtii studied by an improved protoplast fractionation procedure. Physiol. Plant. 69: 481–488.Google Scholar
  31. Kuonen, D., Roberts, P.J. and Cottingham, I.R. 1986. Purification and analysis of mitochondrial membrane proteins on nondenaturing gradient polyacrylamide gels. Anal. Biochem. 153: 221–226.Google Scholar
  32. Leonardo, M.R., Dailly, Y. and Clark, D.P. 1996. Anaerobic regulation of the adhE gene, encoding the fermentative alcohol dehydrogenase of Escherichia coli. J. Bact. 178: 6013–6018.Google Scholar
  33. Lockhart, P.J., Steel, M.A., Hendy, M.D. and Penny, D. 1994. Recovering evolutionary trees under a more realistic model of sequence evolution. Mol. Biol. Evol. 11: 605–612.Google Scholar
  34. Lockhart, P.J., Huson, D., Maier, U., Fraunholz, M.J., Van de Peer, Y., Barbrook, A.C., Howe, C.J. and Steel, M.A. 2000. How molecules evolve in eubacteria? Mol. Biol. Evol. 17: 835–838.Google Scholar
  35. Lwoff, A. 1941. Limites des concentrations en ions H+ et OH-compatibles avec le développement in vitro du flagellé Polytomella caeca. Ann. Inst. Pasteur 66: 407–416.Google Scholar
  36. Markwell, M.A.K., Hass, S.M., Biber, L.L. and Tolbert, N.E. 1978. A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal. Biochem. 87: 206–210.Google Scholar
  37. Melkonian, M. and Surek, B. 1995. Phylogeny of the Chlorophyta: congruence between ultrastructural and molecular evidence. Bull. Soc. Zool. Fr. 120: 191–208.Google Scholar
  38. Nair, R.V., Bennett, G.N. and Papoutsakis, E.T. 1994. Molecular characterization of an aldehyde/alcohol dehydrogenase gene from Clostridium acetobutylicum ATCC 824. J. Bact. 176: 871–885.Google Scholar
  39. Müller, M. 1998. Enzymes and compartmentation of core energy metabolism of anaerobic protists: a special case in eukaryotic evolution? In: G.H. Coombs, K. Vickerman, M.A. Sleigh and A. Warren (Eds.) Evolutionary Relationships among Protozoa, Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 109–131.Google Scholar
  40. Nakayama, T., Watanabe, S., Mitsui, K., Uchisda, H. and Inouye, I. 1996. The phylogenetic relationship between the Chlamydomonadales and Chlorococcales inferred from 18S rRNA sequence data. Phycol. Res. 44: 47–55.Google Scholar
  41. Newman, S.M., Boynton, J.E., Gillham, N.W., Randolph-Anderson, B.L., Johnson, A.M. and Harris, E.H. 1990. Transformation of chloroplast ribosomal RNA genes in Chlamydomonas: molecular and genetic characterization of integration events. Genetics 126: 875–888.Google Scholar
  42. Pawlowski, J., Holzmann, M., Fahrni, J.F and Hallock, P. 2001. Molecular identification of algal endosymbionts in large miliolid foraminifera. 1. Chlorophytes. J. Eukaryot. Microbiol. 48: 362–367.Google Scholar
  43. Penny, D., McComish, B.J., Charleston, M.A. and Hendy, M.D. 2001. Mathematical elegance with biochemical realism: the covarion model of molecular evolution. J. Mol. Evol. 53: 711–723.Google Scholar
  44. Pérez-Martínez, X., Antaramian, A., Vázquez-Acevedo, M., Funes. S., Tolkunova, E., d'Alayer, J., Claros, M.G., Davidson, E., King, M.P. and González-Halphen, D. 2001. Subunit II of cytochrome c oxidase in chlamydomonad algae is a heterodimer encoded by two independent nuclear genes. J. Biol. Chem. 276: 11302–11309.Google Scholar
  45. Pröschold, T., Marin, B., Schlösser, U.G. and Melkonian M. 2001. Molecular phylogeny and taxonomic revision of Chlamydomonas (Chlorophyta). I. Emendation of Chlamydomonas Ehrenberg and Chloromonas Gobi, and description of Oogamochlamys gen. nov. and Lobochlamys gen. nov. Protist 152: 265–300.Google Scholar
  46. Prinsgsheim, E.G. 1955. The genus Polytomella. J. Protozool. 2: 137–145.Google Scholar
  47. Reeves, R.E. 1984. Metabolism of Entamoeba histolytica Schaudinn, 1903. Adv. Parasitol. 23: 105–142.Google Scholar
  48. Rosenthal, B., Mai, Z., Caplivski, D., Ghosh, S., de la Vega, H., Graf, T. and Samuelson, J. 1997. Evidence for the bacterial origin of genes encoding fermentation enzymes of the amitochondriate protozoan parasite Entamoeba histolytica. J. Bact. 179: 3736–3745.Google Scholar
  49. Rotte, C., Stejskal, F. Zhu, G., Keithly, J.S. and Martin, W. 2001. Pyruvate:NADP+ oxidoreductase from the mitochondrion of Euglena gracilis and from the apicomplexan Cryptosporidium parvum: a biochemical relic linking pyruvate metabolism in mitochondriate and amitochondriate protists. Mol. Biol. Evol. 18: 710–720.Google Scholar
  50. Sánchez, L.B. 1998. Aldehyde dehydrogenase (CoA-acetylating) and the mechanism of ethanol formation in the amitochondriate protist, Giardia lamblia. Arch. Biochem. Biophys. 354: 57–64.Google Scholar
  51. Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425.Google Scholar
  52. Sambrook, J., Fritsch, E.F. and Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Plainview, NY.Google Scholar
  53. Schägger, H. and von Jagow, G. 1991. Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal. Biochem. 199: 223–231.Google Scholar
  54. Schramm, A., Siebers, B., Tjaden, B., Brinkmann, H. and Hensel, R. 2000. Pyruvate kinase of the hyperthermophilic crenarchaeote Thermoproteus tenax: physiological role and phylogenetic aspects. J. Bact. 182: 2001–2009.Google Scholar
  55. Shin, W., Boo, S.M. and Longcore, J.E. 2001. Entophlyctis apiculata, a chytrid parasite of Chlamydomonas sp. (Chlorophyceae). Can. J. Bot. 79: 1083–1089.Google Scholar
  56. Stojiljkovic, I., Baumler, A.J. and Heffron, F. 1995. Ethanolamine utilization in Salmonella typhimurium: nucleotide sequence, protein expression, and mutational analysis of the cchA cchB eutE eutJ eutG eutH gene cluster. J. Bact. 177: 1357–1366.Google Scholar
  57. Tachezy, J., Sanchez, L.B. and Müller, M. 2001. Mitochondrial type iron-sulfur cluster assembly in the amitochondriate eukaryotes Trichomonas vaginalis and Giardia intestinalis, as indicated by the phylogeny of IscS. Mol. Biol. Evol. 18: 1919–1928.Google Scholar
  58. Tamarit, J., Cabiscol, E. and Ros, J. 1998. Identification of the major oxidatively damaged proteins in Escherichia coli cells exposed to oxidative stress. J. Biol. Chem. 273: 3027–3032.Google Scholar
  59. Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F. and Higgins, D.G. 1997. The CLUSTAL-X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl. Acids Res. 25: 4876–4882.Google Scholar
  60. van Lis, R., Atteia, A., Mendoza-Hernández, G. and González-Halphen, D. 2003. Identification of novel mitochondrial protein components of Chlamydomonas reinhardtii. A proteomic approach. Plant Physiol. 132: 318–330.Google Scholar
  61. Wise, D.L. 1955. Carbon sources for Polytomella caeca. J. Protozool. 2: 156–158.Google Scholar
  62. Wise, D.L. 1959. Carbon nutrition and metabolism of Polytomella caeca. J. Protozool. 6: 19–23.Google Scholar
  63. Wong, K.K., Murray, B.W., Lewisch, S.A., Baxter, M.K., Ridky, T.W., Ulissi-DeMario, L. and Kozarich, J.W. 1993. Molecular properties of pyruvate formate-lyase activating enzyme. Biochemistry 32: 14102–14110.Google Scholar
  64. Yang, W., Li, E., Kairong, T. and Stanley, S.L. Jr. 1994. Entamoeba histolytica has an alcohol dehydrogenase homologous to the multifunctional adhE gene product of Escherichia coli. Mol. Biochem. Parasitol. 64: 253–260.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Ariane Atteia
    • 1
    • 2
  • Robert van Lis
    • 1
  • Guillermo Mendoza-Hernández
  • Katrin Henze
    • 2
  • William Martin
    • 2
  • Hector Riveros-Rosas
  • Diego González-Halphen
    • 1
  1. 1.Departamento de Genética Molecular, Instituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoMéxico D.F.México
  2. 2.Institute of BotanyUniversity of DüsseldorfDüsseldorfGermany

Personalised recommendations