Plant Molecular Biology

, Volume 53, Issue 1–2, pp 163–173 | Cite as

Conservation and divergence of ASK1 and ASK2 gene functions during male meiosis in Arabidopsis thaliana

  • Dazhong Zhao
  • Tianfu Han
  • Eddy Risseeuw
  • William L. Crosby
  • Hong Ma


Selective proteolysis of regulatory proteins mediated by the ubiquitin pathway is an important mechanism for controlling many biological events. The SCF (Skp1-Cullin-F-box protein) class of E3 ubiquitin ligases controls the ubiquitination of a wide variety of substrates, thereby mediating their degradation by the 26S proteasome. The Arabidopsis genome contains 21 genes encoding Skp1-like proteins that are named as ASKs (Arabidopsis Skp1-like). So far, only the ASK1 gene has been characterized genetically, and is known to be required for male meiosis, flower development, and auxin response. The ASK2 gene is most similar to ASK1 in terms of both the amino acid sequence and expression pattern. To compare ASK2 with ASK1 functionally in male meiosis, different transgenic lines over-expressing ASK1 and ASK2 were tested for their ability to complement the male meiosis defect of the ask1-1 mutant. The genomic ASK1 rescued the ask1-1 mutant defects. The 35S::ASK1 transgene restored male fertility to the ask1-1 mutant, although the percentages of normal pollen grains and tetrads were reduced. 35S::ASK2 lines in the ask1-1 background exhibited partial fertility with even fewer normal pollen grains and tetrads than those of the 35S::ASK1 lines. Detailed analysis of chromosome behavior during male meiosis demonstrated that 35S::ASK1 and 35S::ASK2 lines had different fractions of pollen mother cells undergoing normal meiosis. Our results suggest that ASK2 partially substitutes for ASK1 if expressed at higher than normal levels.

Arabidopsis thaliana ASK1 ASK2 male meiosis SCF complex 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arabidopsis Genome Initiative. 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796–815.Google Scholar
  2. Alexander, M.P. 1969. Differential staining of aborted and nonaborted pollen. Stain Technol. 44: 117–122.Google Scholar
  3. Clegg, M.T., Cummings, M.P. and Durbin, M.L. 1997. The evolution of plant nuclear genes. Proc. Natl. Acad. Sci. USA 94: 7791–7798.Google Scholar
  4. Clough, S.J. and Bent, A.F. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16: 735–743.Google Scholar
  5. del Pozo, J.C. and Estelle, M. 2000. F-box proteins and protein degradation: an emerging theme in cellular regulation. Plant Mol. Biol. 44: 123–128.Google Scholar
  6. Farras, R., Ferrando, A., Jasik, J., Kleinow, T., Okresz, L., Tiburcio, A., Salchert, K., del Pozo, C., Schell, J. and Koncz, C. 2001. SKP1-SnRK protein kinase interactions mediate proteasomal binding of a plant SCF ubiquitin ligase. EMBO J. 20: 2742–2756.Google Scholar
  7. Gagne, J.M., Downes, B.P., Shiu, S.H., Durski, A.M. and Vierstra, R.D. 2002. The F-box subunit of the SCF E3 complex is encoded by a diverse superfamily of genes in Arabidopsis. Proc. Natl. Acad. Sci. USA 99: 11519–11524.Google Scholar
  8. Gray, W.M., del Pozo, J.C., Walker, L., Hobbie, L., Risseeuw, E., Banks, T., Crosby, W.L., Yang, M., Ma, H. and Estelle, M. 1999. Identification of an SCF ubiquitin-ligase complex required for auxin response in Arabidopsis thaliana. Genes Dev. 13: 1678–1691.Google Scholar
  9. Gray, W.M., Kepinski, S., Rouse, D., Leyser, O. and Estelle, M. 2001. Auxin regulates SCFTIR1-dependent degradation of AUX/IAA proteins. Nature 414: 271–276.Google Scholar
  10. Gray, W.M., Hellmann, H., Dharmasiri, S. and Estelle, M. 2002. Role of the Arabidopsis RING-H2 protein RBX1 in RUB modi-fication and SCF function. Plant Cell 14: 2137–2144.Google Scholar
  11. Hershko, A. and Ciechanover, A. 1998. The ubiquitin system. Annu. Rev. Biochem. 67: 425–479.Google Scholar
  12. Ingram, G.C., Goodrich, J., Wilkinson, M.D., Simon, R., Haughn, G.W. and Coen, E.S. 1995. Parallels between UNUSUAL FLORAL ORGANS and FIMBRIATA, genes controlling flower development in Arabidopsis and Antirrhinum. Plant Cell 7: 1501–1510.Google Scholar
  13. Kamura, T., Conrad, M.N., Yan, Q., Conaway, R.C. and Conaway, J.W. 1999. The Rbx1 subunit of SCF and VHL E3 ubiquitin ligase activates Rub1 modification of cullins Cdc53 and Cul2. Genes Dev. 13: 2928–2933.Google Scholar
  14. Knight, J. 2002. All genomes great and small. Nature 417: 374–376.Google Scholar
  15. Koepp, D.M., Harper, J.W. and Elledge, S.J. 1999. How the cyclin became a cyclin: regulated proteolysis in the cell cycle. Cell 97: 431–434.Google Scholar
  16. Levin, J.Z., and Meyerowitz, E.M. 1995. UFO: an Arabidopsis gene involved in both floral meristem and floral organ development. Plant Cell 7: 529–548.Google Scholar
  17. Moffatt, B.A., McWhinnie, E.A., Agarwal, S.K. and Schaff, D.A. 1994. The adenine phosphoribosyltransferase-encoding gene of Arabidopsis thaliana. Gene 143: 211–216.Google Scholar
  18. Porat, R., Lu, P. and O'Neill, S.D. 1998. Arabidopsis SKP1, a homologue of a cell cycle regulator gene, is predominantly expressed in meristematic cells. Planta 204: 345–351.Google Scholar
  19. Risseeuw, E.P., Daskalchuk, T.E., Banks, T.W., Liu, E., Cotelesage, J., Hellmann, H., Estelle, M., Somers, D.E. and Crosby, W.L. 2003. Protein interaction analysis of SCF ubiquitin E3 ligase subunits from Arabidopsis. Plant J. 34: 753–767.Google Scholar
  20. Ross, K.J., Fransz, P. and Jones, G.H. 1996. A light microscopic atlas of meiosis in Arabidopsis thaliana. Chromosome Res. 4: 507–516.Google Scholar
  21. Ruegger, M., Dewey, E., Gray, W.M., Hobbie, L., Turner, J. and Estelle, M. 1998. The TIR1 protein of Arabidopsis functions in auxin response and is related to human SKP2 and yeast grr1p. Genes Dev. 12: 198–207.Google Scholar
  22. Samach, A., Klenz, J.E., Kohalmi, S.E., Risseeuw, E., Haughn, G.W. and Crosby, W.L. 1999. The UNUSUAL FLORAL ORGANS gene of Arabidopsis thaliana is an F-box protein required for normal patterning and growth in the floral meristem. Plant J. 20: 433–445.Google Scholar
  23. Schulman, B.A., Carrano, A.C., Jeffrey, P.D., Bowen, Z., Kinnucan, E.R., Finnin, M.S., Elledge, S.J., Harper, J.W., Pagano, M. and Pavletich, N.P. 2000. Insights into SCF ubiquitin ligases from the structure of the Skp1-Skp2 complex. Nature 408: 381–386.Google Scholar
  24. Schwechheimer, C., Serino, G., Callis, J., Crosby, W.L., Lyapina, S., Deshaies, R.J., Gray, W.M., Estelle, M. and Deng, X.W. 2001. Interactions of the COP9 signalosome with the E3 ubiquitin ligase SCFTIRI in mediating auxin response. Science 292: 1379–1382.Google Scholar
  25. Seol, J.H., Feldman, R.M., Zachariae, W., Shevchenko, A., Correll, C.C., Lyapina, S., Chi, Y., Galova, M., Claypool, J., Sandmeyer, S., Nasmyth, K. and Deshaies, R.J. 1999. Cdc53/cullin and the essential Hrt1 RING-H2 subunit of SCF define a ubiquitin ligase module that activates the E2 enzyme Cdc34. Genes Dev. 13: 1614–1626.Google Scholar
  26. Skowyra, D., Craig, K.L., Tyers, M., Elledge, S.J. and Harper, J.W. 1997. F-box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin-ligase complex. Cell 91: 209–219.Google Scholar
  27. Xie, D.X., Feys, B.F., James, S., Nieto-Rostro, M. and Turner, J.G. 1998. COI1: an Arabidopsis gene required for jasmonateregulated defense and fertility. Science 280: 1091–1094.Google Scholar
  28. Xu, L., Liu, F., Lechner, E., Genschik, P., Crosby, W.L., Ma, H., Peng, W., Huang, D. and Xie, D. 2002. The SCFCOI1 ubiquitin-ligase complexes are required for jasmonate response in Arabidopsis. Plant Cell 14: 1919–1935.Google Scholar
  29. Yang, M., Hu, Y., Lodhi, M., McCombie, W.R. and Ma, H. 1999. The Arabidopsis SKP1-LIKE1 gene is essential for male meiosis and may control homologue separation. Proc. Natl. Acad. Sci. USA 96: 11416–11421.Google Scholar
  30. Zhao, D., Yang, M., Solava, J. and Ma, H. 1999. The ASK1 gene regulates development and interacts with the UFO gene to control floral organ identity in Arabidopsis. Dev. Genet. 25: 209–223.Google Scholar
  31. Zhao, D., Yu, Q., Chen, M. and Ma, H. 2001. The ASK1 gene regulates B function gene expression in cooperation with UFO and LEAFY in Arabidopsis. Development 128: 2735–2746.Google Scholar
  32. Zhao, D., Ni, W., Feng, B., Han, T., Petrasek, M.G. and Ma, H. 2003. Members of the ASK gene family exhibit a variety of expression patterns and may play diverse roles in Arabidopsis. Plant Physiol. 133: 203–217.Google Scholar
  33. Zheng, N., Schulman, B.A., Song, L., Miller, J.J., Jeffrey, P.D., Wang, P., Chu, C., Koepp, D.M., Elledge, S.J., Pagano, M., Conaway, R.C., Conaway, J.W., Harper, J.W. and Pavletich, N.P. 2002. Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex. Nature 416: 703–709.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Dazhong Zhao
    • 1
  • Tianfu Han
    • 1
    • 2
  • Eddy Risseeuw
    • 3
  • William L. Crosby
    • 3
    • 4
  • Hong Ma
    • 1
  1. 1.Department of Biology and Huck Institute for Life Sciences, 315 Wartik LaboratoryPennsylvania State UniversityUniversity ParkUSA
  2. 2.The Chinese Academy of Agricultural SciencesInstitute of Crop Breeding and CultivationBeijingChina
  3. 3.Gene Expression GroupPlant Biotechnology Institute, National Research CouncilSaskatoonCanada
  4. 4.Department of Computer ScienceUniversity of Saskatchewan, 1C101 EngineeringSaskatoonCanada

Personalised recommendations