Plant Molecular Biology

, Volume 53, Issue 1–2, pp 37–50 | Cite as

A RING-H2 zinc-finger protein gene RIE1 is essential for seed development in Arabidopsis

Article

Abstract

RING zinc-finger proteins play important roles in the regulation of development in a variety of organisms. In the plant kingdom, few genes encoding RING zinc-finger proteins have been documented with visible effects on plant growth and development. A novel gene, RIE1, encoding a RING-H2 zinc-finger protein was identified in Arabidopsis thaliana and is characterized in this paper. RIE1 encodes a predicted protein product of 359 amino acids residues with a molecular mass of 40 kDa, with a RING-H2 zinc-finger motif located at the extreme end of the C-terminus. Characterization of a Dissociation (Ds) insertion line (SGT4559) and a T-DNA insertion line (SRIE1) demonstrated that disruption of RIE1 is embryo-lethal. SGT4559 heterozygous plants produced seeds with embryo development arrested from globular to torpedo stages. Some mutant seeds were rescued by embryo culture, and the mutant (rie1) plants seemed to grow normally compared to wild-type plants, except that the mutants produced only abnormal seeds. However, RIE1 was expressed in different tissues throughout the whole plant as revealed by northern blot analysis and gene fusion assay of RIE1 promoter with the β-glucuronidase (GUS) gene. Our results indicated that RIE1 plays an essential role in seed development.

Arabidopsis embryo development gene expression RIE1 RING zinc-finger protein 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bechtold, N., Ellis, J. and Pelletier, G. 1993. In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C.R. Acad. Sci. Paris Sci. Vie/Life Sci. 316: 1194–1199.Google Scholar
  2. Borden, K.L.B. 2000. RING domains: master builders of molecular scaffolds? J. Mol. Biol. 295: 1103–1112.Google Scholar
  3. Borden, K.L.B. and Freemont, P.S. 1996. The RING finger domain: a recent example of a sequence-structure family. Curr. Opin. Struct. Biol. 6: 395–401.Google Scholar
  4. Buchanan-Wollaston, V. 1997. The molecular biology of leaf senescence. J. Exp. Bot. 48: 181–199.Google Scholar
  5. Chaudhury, A.M., Koltunow, A., Payne, T., Luo, M., Tucker M. R., Dennis, E.S. and Peacock, W.J. 2001. Control of early seed development. Annu. Rev. Cell Dev. Biol. 17: 677–699.Google Scholar
  6. Chomczynski, P. and Sacchi, N. 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162: 156–159.Google Scholar
  7. Ciechanover, A. 1998. The ubiquitin-proteasome pathway: on protein death and cell life. EMBO J. 17: 7151–7160.Google Scholar
  8. Ciechanover, A., Orian, A. and Schwartz, A.L. 2000. Ubiquitinmediated proteolysis: biological regulation via destruction. BioEssays 22: 442–451.Google Scholar
  9. Deng, X.W., Matsui, M., Wei, N., Wagner, D., Chu, A.M., Feldmann, K.A. and Quail, P.H. 1992. COP1, an Arabidopsis regulatory gene, encodes a protein with both a zinc-binding motif and a Gβ homologous domain. Cell 71: 791–801.Google Scholar
  10. Freemont, P.S., Hanson, I.M., Trowsdale, J. 1991. A novel cysteinerich sequence motif. Cell 64: 483–484.Google Scholar
  11. Freemont, P.S. 2000. Ubiquitination: RING for destruction. Curr. Biol. 10: R84–R87.Google Scholar
  12. Freemont, P.S. 1993. The RING finger: a novel protein sequence motif related to the zinc finger. Ann. NY Acad. Sci. 684: 174–192.Google Scholar
  13. Gan, S. and Amasino, R.M. 1997. Making sense of senescence: molecular genetic regulation and manipulation of leaf senescence. Plant Physiol. 113: 313–319.Google Scholar
  14. Goldberg, R.B., De Paiva, G. and Yadegari, R. 1994. Plant embryogenesis: zygote to seed. Science 266: 605–614.Google Scholar
  15. Gray, W.M., Hellmann H., Dharmasiri, S. and Estelle, M. 2002. Role of the Arabidopsis RING-H2 protein RBX1 in RUB modi-fication and SCF function. Plant Cell 14: 2137–2144.Google Scholar
  16. Haas, A.L. and Siepmann, T.J. 1997. Pathways of ubiquitin conjugation. FASEB J. 11: 1257–1268.Google Scholar
  17. Haas, B.J., Volfovsky, N., Town, C.D., Troukhan, M., Alexandrov, N., Feldmann, K.A., Flavell, R.B., White, O. and Salzberg, S.L. 2002. Full-length messenger RNA sequences greatly improve genome annotation. Genome Biol. 3(6): 0029.1–0029.12.Google Scholar
  18. Hochstrasser M. 1996. Ubiquitin-dependent protein degradation. Annu. Rev. Genet. 30: 405–439.Google Scholar
  19. Jensen, R.B., Jensen, K.L., Jespersen, H.M. and Skriver, K. 1998. Widespread occurrence of a highly conserved RING-H2 zinc finger motif in the model plant Arabidopsis thaliana. FEBS Lett. 436: 283–287.Google Scholar
  20. Jefferson, R.A. 1987. Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol. Biol. Rep. 5: 387–405.Google Scholar
  21. Jefferson, R.A., Kavanagh, T.A. and Bevan, M.W. 1987. GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6: 3901–3907.Google Scholar
  22. Jiang, L., Philips, T.E., Rogers, S.W. and Rogers J.C. 2000. Biogenesis of the protein storage vacuole crystalloid. J. Cell Biol. 150: 755–769.Google Scholar
  23. Joazeiro, C.A.P., Wing, S.S., Huang, H.K., Leverson, J.D., Hunter, T. and Liu, Y.C. 1999. The tyrosine kinase negative regulator c-Cbl as RING-type, E2-dependent ubiquitin-protein ligase. Science 286: 309–312.Google Scholar
  24. Kyte, J. and Doolittle, R.F. 1982. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157: 105–132.Google Scholar
  25. Laity, J.H., Lee, B.M. and Wright, P.E. 2001. Zinc-finger proteins: new insights into structural and functional diversity. Curr. Opin. Struct. Biol. 11: 39–46.Google Scholar
  26. Lechner, E., Goloubinoff, P., Genschik, P. and Shen, W.H. 2002. A gene trap Dissociation insertion line, associated with a RING-H2 finger gene, shows tissue specific and developmental regulated expression of gene in Arabidopsis. Gene 290: 63–71.Google Scholar
  27. Lorick, K.L., Jensen, J.P., Fang, S., Ong, A.M., Hatakeyama, S. and Weissman, A.M. 1999. RING fingers mediate ubiquitinconjugating enzyme (E2)-dependent ubiquitination. Proc. Natl. Acad. Sci. USA 96: 11364–11369.Google Scholar
  28. Martínez-García, M., Garcidueñas-Piña, C. and Guzmán, P. 1996. Gene isolation in Arabidopsis thaliana by conditional overexpression of cDNAs toxic to Saccharomyces cerevisiae: identi-fication of a novel early response zinc-finger gene. Mol. Gen. Genet. 252: 587–596.Google Scholar
  29. Matsuda, N. and Nakano, A. 1998. RMA1, an Arabidopsis thaliana gene whose cDNA suppresses the yeast sec15 mutation, encodes a novel protein with a RING finger motif and a membrane anchor. Plant Cell Physiol. 39: 545–554.Google Scholar
  30. Matsuda, N., Suzuki, T., Tanaka, K. and Nakano, A. 2001. Rma1, a novel type of RING finger protein conserved from Arabidopsis to human, is amembrane-bound ubiquitin ligase. J. Cell Sci. 114: 1949–1957.Google Scholar
  31. Meinke, D.W. 1994. Seed development in Arabidopsis thaliana. In: E.M. Meyerowitz and C.R. Somerville (Eds.) Arabidopsis, Cold Spring Harbor Laboratory Press, Plainview, NY, pp. 253–295.Google Scholar
  32. Meinke, D.W. 1995. Molecular genetics of plant embryogenesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46: 369–394.Google Scholar
  33. Meinke, D.W. 1991. Perspectives on genetic analysis of plant embryogenesis. Plant Cell 3: 857–866.Google Scholar
  34. Molnár, G., Bancos, S., Nagy, F. and Szkeres, M. 2002. Characterization of BRH1, a brassinosteroid-responsive RING-H2 gene from Arabidopsis thaliana. Planta 215: 127–133.Google Scholar
  35. Nakai, K. and Kanehisa, M. 1992. A knowledge base for predicting protein localization sites in eukaryotic cells. Genomics 14: 897–911.Google Scholar
  36. Parinov, S., Sevugan, M., Ye, D., Yang, W.C., Kumaran, M. and Sundaresan, V. 1999. Analysis of flanking sequences from Dissociation insertion lines: a database for reverse genetics in Arabidopsis. Plant Cell 11: 2263–2270.Google Scholar
  37. Potuschak, T., Stary, S., Schlögelhofer, P., Becker, F., Nejinskaia, V. and Bachmair, A. 1998. PRT1 of Arabidopsis thaliana encodes a component of the plant N-end rule pathway. Proc. Natl. Acad. Sci. USA 95: 7904–7908.Google Scholar
  38. Quirino, B.F., Noh, Y.S., Himelblau, E. and Amasino, R.M. 2000. Molecular aspects of leaf senescence. Trends Plant Sci. 5: 278–282.Google Scholar
  39. Sambrook, J., and Fritsch, E.F. 2001. Molecular Cloning: A Laboratory Manual, 3rd ed. Cold Spring Harbor Laboratory Press, Plainview, NY.Google Scholar
  40. Saurin, A.J., Borden, K.L.B., Boddy, M.N. and Freemont, P.S. 1996. Does this have a familiar RING? Trends Biochem. Sci. 21: 208–214.Google Scholar
  41. Schneider, T., Dinkins, R., Robinson, K., Shellhammer, J. and Meinke, D.W. 1989. An embryolethal mutant of Arabidopsis thaliana is a biotin auxotroph. Dev. Biol. 131: 161–167.Google Scholar
  42. Schwechheimer, C., Serino, G., Callis, J., Crosby, W.L., Lyapina, S., Deshaies, R.J., Gray, W.M., Estelle, M. and Deng, X.W. 2001. Interactions of the COP9 signalosome with the E3 ubiquitin ligase SCFTIR1 in mediating auxin response. Science 292: 1379–1382.Google Scholar
  43. Shellhammer, J. and Meinke, D.W. 1990. Arrested embryos from the bio1 auxotroph of Arabidopsis contain reduced levels of biotin. Plant Physiol. 93: 1162–1167.Google Scholar
  44. Sundaresan, V., Springer, P., Volpe, T., Haward, S., Jones, J.D., Dean, C., Ma, H. and Martienssen, R. 1995. Patterns of gene action in plant development revealed by enhancer trap and gene trap transposable elements. Genes Dev. 9: 1797–1810.Google Scholar
  45. Thomas, T.L. 1993. Gene expression during plant embryogenesis and germination: an overview. Plant Cell 5: 1401–1410.Google Scholar
  46. Torii, K.U., McNellis, T.W. and Deng, X.W. 1998. Functional dissection of Arabidopsis COP1 reveals special roles of its three structural modules in light control of seedling development. EMBO J. 17: 5577–5587.Google Scholar
  47. Torii, K.U., Stoop-Myer, C.D., Okamoto, H., Coleman, J.E., Matsui, M. and Deng, X.W. 1999. The RING finger motif of photomorphogenic repressor COP1 specifically interacts with the RING-H2 motif of a novel Arabidopsis protein. J. Biol. Chem. 274: 27674–27681.Google Scholar
  48. Tyers, M. and Willems, A. R. 1999. One ring to rule a superfamily of E3 ubiquitin ligases. Science 28: 603–604.Google Scholar
  49. Uwer, U., Willmitzer, L. and Altmann, T. 1998. Inactivation of a glycyl-tRNA synthetase leads to an arrest in plant embryo development. Plant Cell 10: 1277–1294.Google Scholar
  50. Wu, Y., Haberland, G., Zhou, C. and Koop, H.U. 1992. Somatic embryogenesis, formation of morphogenetic callus and normal development in zygotic embryos of Arabidopsis thaliana in vitro. Protoplasma 169: 89–96.Google Scholar
  51. Xie, Q., Guo, H.S., Dallman, G., Fang, S., Weissman, A.M., Chua, N.H. 2002. SINAT5 promotes ubiquitin-related degradation of NAC1 to attenuate auxin signals. Nature 419: 167–170.Google Scholar
  52. Xu, R.Q., Tomooka, N., Vaughan, D.A. 2000. AFLP markers for characterizing the Azuki bean complex. Crop Sci. 40: 815–823.Google Scholar
  53. Zou, J., and Taylor, D.C. 1997. Cloning and molecular characterization of an Arabidopsis thaliana RING zinc finger gene expressed preferentially during seed development. Gene 196: 291–295.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  1. 1.Department of BotanyMiami UniversityOxfordUSA

Personalised recommendations