Plant Molecular Biology

, Volume 53, Issue 3, pp 399–410 | Cite as

Highly abundant pea LTR retrotransposon Ogre is constitutively transcribed and partially spliced

  • Pavel NeumannEmail author
  • Dana Požárková
  • Jiří Macas


We have isolated and characterized a novel giant retroelement, named Ogre, which is over 22 kb long and makes up at least 5% of the pea (Pisum sativum L.) genome. This element can be classified as a Ty3/gypsy-like LTR retrotransposon based on the presence of long terminal repeats (LTRs) and the order of the domains coding for typical retrotransposon proteins. In addition to its extreme length, it has several features which make it unique among the retroelements described so far: (1) the sequences coding for gag and prot proteins are separated from the rt/rh-int domains by several stop codons; (2) the region containing these stop codons is removed from the element transcripts by splicing which results in reconstitution of the complete gag-pol coding sequence; (3) only a part of the transcripts is spliced which probably determines the ratio of translated proteins; (4) the element contains an extra ORF located upstream the gag-pol coding sequences, potentially coding for a protein of 546–562 amino acids with unknown function. The transcriptional activity of the Ogre elements has been detected in all organs tested (leaves, roots, flowers) as well as in wounded leaves and protoplasts. Considering this retroelement's constitutive expression and observed high mutual similarity of the element genomic sequences, it is possible to speculate about its recent amplification in the genomes of pea and other legume plants.

pea Pisum sativum retroelement retrotransposon splicing transcriptional activity transmembrane domain 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alam, S.L., Atkins, J.F. and Gesteland, R.F. 1999. Programmed ribosomal frameshifting: Much ado about knotting! Proc. Natl. Acad. Sci. USA 96: 14177–14179.Google Scholar
  2. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D. J. 1997. Gapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucl. Acids Res. 25: 3389–3402.Google Scholar
  3. Arkhipova, I.R. 2001. Transposable element in the animal kingdom. Mol. Biol. 35: 157–167.Google Scholar
  4. Asante-Appiah, E. and Skalka, A.M. 1997. Molecular mechanisms in retrovirus DNA integration. Antiviral Res. 36: 139–156.Google Scholar
  5. Baranyi, M. and Greilhuber, J. 1996. Flow cytometric and Feulgen analysis of genome size variation in Pisum. Theor. Appl. Genet. 92: 297–307.Google Scholar
  6. Beguiristain, T., Grandbastien, M.A., Puigdomenech, P. and Casacuberta, J.M. 2001. Three Tnt1 subfamilies show different stress associated patterns of expression in tobacco. Consequences for retrotransposon control and evaluation in plants. Plant Physiol. 127: 212–221.Google Scholar
  7. Bénit, L., Dessen, P. and Heidmann, T. 2001. Identification, phylogeny, and evolution of retroviral elements based on their envelope genes. J. Virol. 75: 11709–11719.Google Scholar
  8. Bennetzen, J.L. 1996. The contributions of retroelements to plant genome organization, function and evolution. Trends Microbiol. 4: 347–353.Google Scholar
  9. Bennetzen, J.L. 1998. The structure and evolution of angiosperm nuclear genomes. Curr. Opin. Plant Biol. 1: 103–108.Google Scholar
  10. Bennetzen, J.L. 2000. Transposable element contributions to plant gene and genome evolution. Plant Mol. Biol. 42: 251–269.Google Scholar
  11. Bhattacharya, S., Bakre, A. and Bhattacharya, A. 2002. Mobile genetic elements in protozoan parasites. J. Genet. 81: 73–86.Google Scholar
  12. Boeke, J.D. and Stoye, J.P. 1997. Retrotransposons, endogenous retroviruses, and the evolution of retroelements. In: J.M. Coffin, S.H. Hughes and H.E. Varmus (Eds.) Retroviruses, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 343–436.Google Scholar
  13. Burd, C.B. and Dreyfuss, G. 1994. Conserved structures and diversity of functions of RNA-binding proteins. Science 265: 615–621.Google Scholar
  14. Chavanne, F., Zhang, D.X., Liaud, M.F. and Cerff, R. 1998. Structure and evolution of Cyclops: a novel giant retrotransposon of the Ty3/gypsy family highly amplified in pea and other legume species. Plant Mol. Biol. 37: 363–375.Google Scholar
  15. Davies, J.F., Hostomska, Z., Hostomsky, Z., Jordan, S.R. and Matthews, D.A. 1991. Crystal structure of the ribonuclease H domain of HIV-1 reverse transcriptase. Science 252: 88–95.Google Scholar
  16. Deininger, P.L. and Batzer, M.A. 2002. Mammalian retroelements. Genome Res. 12: 1455–1465.Google Scholar
  17. Dellaporta, S.L., Wood, J. and Hicks, J.B. 1983. A plant DNA minipreparation: version II. Plant Mol. Biol. Rep. 1: 19–21.Google Scholar
  18. Ding, J., Das, K., Hsiou, Y., Sarafianos, S.G., Clark, A.D., Jacobo-Molina, A., Tantillo, C., Hughes, S.H. and Arnold, E. 1998.Structure and functional implications of the polymerase active site region in a complex of HIV-1 RT with a double-stranded DNA template-primer and an antibody Fab fragment at 2.8 A resolution. J. Mol. Biol. 284: 1095–1111.Google Scholar
  19. Dorokhov, Y.L., Skulachev, M.V., Ivanov, P.A., Zvereva, S.D., Tjulkina, L.G., Merits, A., Gleba, Y.Y., Hohn, T. and Atabekov, J.G. 2002. Polypurine (A)-rich sequences promote cross-kingdom conservation of internal ribosome entry. Proc. Natl. Acad. Sci. USA 99: 5301–5306.Google Scholar
  20. Echenique, V., Stamova, B., Wolters, P., Lazo, G., Carollo, V.L. and Dubcovsky, J. 2002. Frequencies of Ty1-copia and Ty3-gypsy retroelements within the Triticae EST databases. Theor. Appl. Genet. 104: 840–844.Google Scholar
  21. Elrouby, N. and Bureau, T.E. 2001. A novel hybrid open reading frame formed by multiple cellular gene transductions by a plant long terminal repeat retroelement. J. Biol. Chem. 276: 41963–41968.Google Scholar
  22. Feschotte, C., Jiang, N. and Wessler, S.R. 2002. Plant transposable elements: where genetics meets genomics. Genetics 3: 329–341.Google Scholar
  23. Gesteland, R.F. and Atkins, J.F. 1996. Recoding: dynamic reprogramming of translation. Annu. Rev. Biochem. 65: 741–768.Google Scholar
  24. Grandbastien, M.A. 1998. Activation of plant retrotransposons under stress conditions. Trends Plant Sci. 3: 181–187.Google Scholar
  25. Grandbastien, M.A., Lucas, H., Morel, J.B., Mhiri, C., Vernhettes, S. and Casacuberta, J.M. 1997. The expression of the tobacco Tnt1 retrotransposon is linked to plant defense responses. Genetica 100: 241–252.Google Scholar
  26. Hebsgaard, S.M., Korning, P.G., Tolstrup, N., Engelbrecht, J., Rouzé, P. and Brunak, S. 1996. Splice site prediction in Arabidopsis thaliana pre-mRNA by combining local and global sequence information. Nucl. Acids Res. 24: 3439–3452.Google Scholar
  27. Hirochika, H. 1993. Activation of tobacco retrotransposons during tissue culture. EMBO J. 12: 2521–2528.Google Scholar
  28. Hirochika, H. and Hirochika, R. 1993. Ty1-copia group retrotransposons as ubiquitous components of plant genomes. Jpn. J. Genet. 68: 35–46.Google Scholar
  29. Hofmann, K. and Stoffel, W. 1993. TMBASE – a database of membrane spanning protein segments. Biol. Chem. Hoppe-Seyler 374: 166.Google Scholar
  30. Holzschu, D.L., Martineau, D., Fodor, S.K., Vogt, V.M., Bowser, P.R. and Casey, J.W. 1995. Nucleotide sequence and protein analysis of a complex piscine retrovirus, Walley dermal sarcoma virus. J. Virol. 69: 5320–5331.Google Scholar
  31. Hull, R. 2001. Classifying reverse transcribing elements: a proposal and a challenge to the ICTV. Arch. Virol. 146: 2255–2261.Google Scholar
  32. Kalendar, R., Tanskanen, J., Immonen, S., Nevo, E. and Schulman, A.H. 2000. Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proc. Natl. Acad. Sci. USA 97: 6603–6607.Google Scholar
  33. Kato, A., Iida, Y., Yakura, K. and Tanifuji, S. 1985. Sequence analysis of Vicia faba highly repeated DNA: the BamHI repeated sequence families. Plant Mol. Biol. 5: 41–53.Google Scholar
  34. Kato, H., Sriprasertsak, P., Seki, H., Ichinose, Y., Shiraishi, T. and Yamada, T. 1999. Functional analysis of retrotransposons in pea. Plant Cell Physiol. 40: 933–941.Google Scholar
  35. Krogh, A., Larrson, B., von Heijne, G. and Sonnhammer, E.L.L. 2001. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305: 567–580.Google Scholar
  36. Kumar, A. and Bennetzen, J. L. 1999. Plant retrotransposons. Annu. Rev. Genet. 33: 479–532.Google Scholar
  37. Kumekawa, N., Ohtsubo, H., Horiuchi, T. and Ohtsubo, E. 1999a. Identification and characterization of novel retrotransposons of the gypsy type in rice. Mol. Gen. Genet. 260: 593–602.Google Scholar
  38. Kumekawa, N., Ohtsubo, E. and Ohtsubo, H. 1999b. Identification and phylogenetic analysis of gypsy-type retrotransposons in the plant kingdom. Genes Genet. Syst. 74: 299–307.Google Scholar
  39. Laten, H.M. 1999. Phylogenetic evidence for Ty1-copia-like endogenous retroviruses in plant genomes. Genetica 107: 87–93.Google Scholar
  40. Laten, H.M, Majumdar, A. and Gaucher, E.A. 1998. SIRE-1, a copia/Ty1-like retroelement from soybean, encodes a retroviral envelope like protein. Proc. Natl. Acad. Sci. USA 95: 6897–6902.Google Scholar
  41. Lerat, E. and Capy, E. 1999. Retrotransposons and retroviruses: analysis of the envelope gene. Mol. Biol. Evol. 16: 1198–1207.Google Scholar
  42. Lowe, T.M. and Eddy, S.R. 1997. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucl. Acids Res. 25: 955–964.Google Scholar
  43. Maignan, S., Guilloteau, J.P., Zhou-Liu, Q., Clément-Mella, C. and Mikol, V. 1998. Crystal structures of the catalytic domain of HIV-1 integrase free and complexed with its metal cofactor: high level of similarity of the active site with other viral integrases. J. Mol. Biol. 282: 359–368.Google Scholar
  44. Malik, H.S. and Eickbush, T.H. 2001. Phylogenetic analysis of ribonuclease H domains suggests a late, chimeric origin of LTR retrotransposable elements and retroviruses. Genome Res. 11: 1187–1197.Google Scholar
  45. Marchler-Bauer, A. anderson, J.B., DeWeese-Scott, C., Fedorova, N.D., Geer, L.Y., He, S., Hurwitz, D.I., Jackson, J.D., Jacobs, A.R., Lanczycki, C.J., Liebert, C.A., Liu, C., Madej, T., Marchler, G.H., Mazumder, R., Nikolskaya, A.N., Panchenko, A.R., Rao, B.S., Shoemaker, B.A., Simonyan, V., Song, J.S., Thiessen, P.A., Vasudevan, S., Wang, Y., Yamashita, R.A., Yin, J.J. and Bryant, S.H. 2003. CDD: a curated Entrez database of conserved domain alignments. Nucl. Acids Res. 31: 383–387.Google Scholar
  46. Martínez-Izquierdo, J.A., Garcia-Martínez, J. and Vicient, C.M. 1997. What makes Grande1 retrotransposon different? Genetica 100: 15–28.Google Scholar
  47. Neumann, P., Nouzová, M. and Macas, J. 2001. Molecular and cytogenetic analysis of repetitive DNA in pea (Pisum sativum L.). Genome 44: 716–728.Google Scholar
  48. Nouzová, M., Kubaláková, M., Doleželová, M., Koblížková, A., Neumann, P., Doležel, J. and Macas, J. 1999. Cloning and characterization of new repetitive sequences in field bean (Vicia faba L.). Ann. Bot. (London) 83: 535–541.Google Scholar
  49. Nouzová, M., Neumann, P., Navrátilová, A., Galbraith, D.W. and Macas, J. 2001. Microarray-based survey of repetitive genomic sequences in Vicia spp. Plant Mol. Biol. 45: 229–244.Google Scholar
  50. Pearce, S.R., Kumar, A. and Flavell, A.J. 1996. Activation of the Ty1-copia group retrotransposons of potato (Solanum tuberosum) during protoplast isolation. Plant Cell Rep. 15: 949–953.Google Scholar
  51. Pearson, W.R. and Lipman, D.J. 1988. Improved tools for biological sequence comparison. Proc. Natl. Acad. Sci. USA 85: 2444–2448.Google Scholar
  52. Persson, B. and Argos, P. 1994. Prediction of transmembrane segments in proteins utilizing multiple sequence alignments. J. Mol. Biol. 237: 182–192.Google Scholar
  53. Peterson-Burch, B.D. and Voytas, D.F. 2002. Genes of the Pseudoviridae (Ty1/copia retrotransposons). Mol. Biol. Evol. 19: 1832–1845.Google Scholar
  54. Peterson-Burch, B.D., Wright, D.A., Laten, H.M. and Voytas, D.F. 2000. Retroviruses in plants? Trends Genet. 16: 151–152.Google Scholar
  55. Pouteau, S., Huttner, E., Grandbastien, M.A. and Caboche, M. 1991. Specific expression of the tobacco Tnt1 retrotransposon in protoplasts. EMBO J. 10: 1911-1918.Google Scholar
  56. Rice, P., Longden, I. and Bleasby, A. 2000. EMBOSS: The European Molecular Biology Open Software Suite. Trends Genet. 16: 276–277.Google Scholar
  57. Rossi, M., Araujo, P.G. and Van Sluys, M. 2001. Survey of transposable elements in sugarcane expressed sequence tags (ESTs). Genet. Mol. Biol. 24: 147–154.Google Scholar
  58. Sanger, F., Nicklen, D. and Coulson, A.R. 1977. DNA sequencing with chain terminating inhibitors. Proc. Natl. Acad. Sci. USA 74: 5463–5467.Google Scholar
  59. SanMiguel, P. and Bennetzen, J. 1998. Evidence that recent increase in maize genome size was caused by the massive amplification of intergene retrotransposons. Ann. Bot. 82: 37–44.Google Scholar
  60. SanMiguel, P., Tikhonov, A., Jin, Y., Motchoulskaia, N., Zakharov, D., Melake-Berhan, A., Springer, P.S., Edwards, K.J., Lee, M., Avramova, Z. and Bennetzen, J.L. 1996. Nested retrotransposons in the intergenic regions of the maize genome. Science 274: 765–768.Google Scholar
  61. SanMiguel, P., Gaut, B.S., Tikhonov, A., Nakajima, Y. and Bennetzen, J.L. 1998. The paleontology of intergene retrotransposons of maize. Nature Genet. 20: 43–45.Google Scholar
  62. Schmidt, T. 1999. LINEs, SINEs and repetitive DNA: non-LTR retrotransposons in plant genomes. Plant. Mol. Biol. 40: 903–910.Google Scholar
  63. Shehu-Xhilaga, M., Crowe, S.M. and Mak, J. 2001. Maintenance of the gag/gag-pol ratio is important for human immunodeficiency virus type 1 RNA dimerization and viral infectivity. J. Virol. 75: 1834–1841.Google Scholar
  64. Shirasu, K., Schulman, A.H., Lahaye, T. and Schulze-Lefert, P. 2000. A contiguous 66-kb barley DNA sequence provides evidence for reversible genome expansion. Genome Res. 10: 908–915.Google Scholar
  65. Skalka, A.M. 1989. Retroviral proteases: First glimpses at the anatomy of processing machine. Cell 56: 911–913.Google Scholar
  66. Staden, R. 1996. The Staden sequence analysis package. Mol. Biotechnol. 5: 233–241.Google Scholar
  67. Suoniemi, A., Narvanto, A. and Schulman, A.H. 1996. The BARE-1 retrotransposon is transcribed in barley from an LTR promoter active in transient assays. Plant Mol. Biol. 31: 295–306.Google Scholar
  68. Suoniemi, A., Tanskanen, J. and Schulman, A.H. 1998. Gypsy like retrotransposons are widespread in the plant kingdom. Plant J. 13: 699–705.Google Scholar
  69. Swanstrom, R. and Wills, J.W. 1997. Synthesis, assembly, and processing of viral proteins. In: J.M. Coffin, S.H. Hughes and H.E. Varmus (Eds.) Retroviruses, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 263–334.Google Scholar
  70. Takeda, S., Sugimoto, K., Otsuki, H. and Hirochika, H. 1998. Transcriptional activation of the tobacco retrotransposon Tto1 by wounding and methyl jasmonate. Plant Mol. Biol. 36: 365–376.Google Scholar
  71. Telesnitsky, A. and Goff, S.P. 1997. Reverse transcriptase and the generation of retroviral DNA. In: J.M. Coffin, S.H. Hughes and H.E. Varmus (Eds.) Retroviruses, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 121–160.Google Scholar
  72. Temin, H.M. 1981. Structure, variation and synthesis of retrovirus long terminal repeat. Cell 27: 1–3.Google Scholar
  73. Thompson, J.D., Higgins, D.G. and Gibson, T.J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl. Acids Res. 22: 4673–4680.Google Scholar
  74. Turcich, M.P., Bokhari-Riza, A., Hamilton, D.A., He, C., Messier, W., Stewart, C.B. and Mascarenhas, J.P. 1996. PREM-2, a copia type retroelement in maize is expressed preferentially in early microspores. Sex. Plant Reprod. 9: 65–74.Google Scholar
  75. Tusnády, G.E. and Simon, I. 2001. The HMMTOP transmembrane topology prediction server. Bioinformatics 17: 849–850.Google Scholar
  76. Vicient, C.M., Jääskeläinen, M.J., Kalendar, R. and Schulman A.H. 2001a. Active retrotransposons are a common feature of grass genomes. Plant Physiol. 125: 1283–1292.Google Scholar
  77. Vicient, C.M., Kalendar, R. and Schulman, A.H. 2001b. Envelope class retrovirus-like elements are widespread, transcribed and spliced, and insertionally polymorphic in plants. Genome Res. 11: 2041–2049.Google Scholar
  78. Vicient, C.M., Suoniemi, A., Anamthawat-Jonsson, K., Tanskanen, J., Beharav, A., Nevo, E. and Schulman, A.H. 1999. Retrotransposon BARE-1 and its role in genome evolution in the genus Hordeum. Plant Cell 11: 1769–1784.Google Scholar
  79. Vogt, V.M. 1997. Retroviral virions and genomes. In: J.M. Coffin, S.H. Hughes and H.E. Varmus (Eds.) Retroviruses, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 27–70.Google Scholar
  80. Wilhelm, M. and Wilhelm, F.-X. 2001. Reverse transcription of retroviruses and LTR retrotransposons. Cell. Mol. Life Sci. 58: 1246–1262.Google Scholar
  81. Wöstemeyer, J. and Kreibich, A. 2002. Repetitive DNA elements in fungi (Mycota): impact on genomic architecture and evolution. Curr. Genet. 41: 189–198.Google Scholar
  82. Wright, D.A. and Voytas, D.F. 2001. Athila4 of Arabidopsis and Calypso of soybean define a lineage of endogenous plant retroviruses. Genome Res. 12: 122–131.Google Scholar
  83. Xia, X., Du, S. and Erickson, L. 1996. A moderately repetitive DNA sequence in alfalfa is transcribed in a floral-specific manner. Genome 39: 9–16.Google Scholar
  84. Xiong, Y. and Eickbush, T.H. 1990. Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J. 9: 3353–3362.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Pavel Neumann
    • 1
    Email author
  • Dana Požárková
    • 1
  • Jiří Macas
    • 1
  1. 1.Laboratory of Molecular CytogeneticsInstitute of Plant Molecular BiologyBudějoviceCzech Republic

Personalised recommendations