Advertisement

Photosynthetica

, Volume 42, Issue 2, pp 179–185 | Cite as

Low Temperature Tolerance of Tobacco Plants Transformed to Accumulate Proline, Fructans, or Glycine Betaine. Variable Chlorophyll Fluorescence Evidence

  • D. Parvanova
  • A. Popova
  • I. Zaharieva
  • P. Lambrev
  • T. Konstantinova
  • S. Taneva
  • A. Atanassov
  • V. Goltsev
  • D. Djilianov
Article

Abstract

Tobacco (Nicotiana tabacum L.) has been transformed to accumulate different compatible solutes (proline, fructans, or glycine betaine) in order to improve its tolerance to abiotic stress. Photosynthetic activity of wild Type (wt) and transformed tobacco plants before and after freezing stress was studied by measuring chlorophyll (Chl) fluorescence. The JIP test of Chl fluorescence induction was used to analyze in details the functional activity of photosystem 2. No significant differences were found among wild Type and transgenic plants after 12 h of freezing. Both plant Types maintained the same values of the measured parameters [FV/FM, PI(CSM), ABS/RC, TR0/RC, ET/RC] after recovery of stress. The studied Chl fluorescence parameters decreased only for the wild Type plants, stressed for 24 h at −2 °C. The strong inhibition of photosynthetic reactions in the wt plant after 24 h of freezing could not be restored. The evaluated parameters of transgenic plants did not change significantly after 24 h at −2 °C and successfully survived freezing stress.

freezing stress JIP test Nicotiana tabacum transgenic plants 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bajaj, S., Targolli, J., Liu, L.-F., Ho, T.-H.D., Wu, R.: Trans-genic approaches to increase dehydration-stress tolerance in plants.-Mol. Breed. 5: 493-503, 1999.Google Scholar
  2. Björkman, O., Demmig, B.: Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascu-lar plants of diverse origins.-Planta 170: 489-504, 1987.Google Scholar
  3. Bohnert, H.J., Jernsen, R.G.: Strategies for engineering water stress tolerance in plants.-Trends Biotechnol. 14: 89-97, 1996.Google Scholar
  4. Boyer, J.S.: Plant productivity and environment.-Science 218: 443-448, 1982.Google Scholar
  5. Deshnium, P., Los, D.A., Hayashi, H., Mustardy, L., Murata, N.: Transformation of Synechococcus with a gene for choline oxidase enhances tolerance to salt stress.-Plant mol. Biol. 29: 897-907, 1995.Google Scholar
  6. Enami, I., Kitamura, M., Tomo, T., Isokawa, Y., Ohta, H., Katoh, S.: Is the primary cause of thermal inactivation of oxy-gen evolution in spinach PS II membranes release of the ex-trinsic 33 kDa protein or of Mn?-Biochim. biophys. Acta 1186: 52-58, 1994.Google Scholar
  7. Goughlan, S.J., Heber, U.: The role of glycinebetaine in protec-tion of spinach thylakoids against freezing stress.-Planta 156: 62-69, 1982.Google Scholar
  8. Hincha, D.K., Hellwege, E.M., Heyer, A.G., Crowe, J.H.: Plant fructans stabilize phosphatidylcholine liposomes during freezing-drying.-Eur. J. Biochem. 267: 535-540, 2000.Google Scholar
  9. Hu, C.-A.A., Delauney, A.J., Verma, D.P.S.: A bifunctional enzyme (1-pyrroline-5-carboxylate-synthetase) catalyzes the first two steps in proline biosynthesis in plants.-Proc. nat. Acad. Sci. USA 89: 9354-9358, 1992.Google Scholar
  10. Huner, N.P.A., Öquist, G., Hurry, M.V., Krol, M., Falk, S., Griffith, M.: Photosynthesis, photoinhibition and low tem-perature acclimation in cold tolerant plants.-Photosynth. Res. 37: 19-39, 1993.Google Scholar
  11. Kishitany, S., Watanabe, K., Yasuda, S., Arakawa, K., Takabe, T.: Accumulation of glycinebetaine during cold acclimation and freezing tolerance in leaves of winter and spring barley plants.-Plant Cell Environ. 17: 89-97, 1994.Google Scholar
  12. Kitajama, M., Butler, W.L.: Quenching of chlorophyll fluores-cence and primary photochemistry in chloroplasts by dibro-mothymoquinone.-Biochim. biophys. Acta 376: 105-115, 1975.Google Scholar
  13. Klosson, R.J., Krause, G.H.: Freezing injury in cold-acclimated and unhardened spinach leaves. II. Effects of freezing on chlorophyll fluorescence and light scattering reactions.-Planta 151: 347-352, 1981.Google Scholar
  14. Konstantinova, T., Parvanova, D., Atanassov, A., Djilianoiv, D.: Freezing tolerant tobacco, transformed to accumulate os-moprotectants.-Plant Sci. 163: 157-164, 2002.Google Scholar
  15. Krause, G.H.: Photoinhibition induced by low temperatures.-In: Baker, N.R., Bowyer, J.R. (ed.): Photoinhibition of Photo-synthesis. From Molecular Mechanisms to the Field. Pp. 331-348. BIOS Scientfic Publ., Oxford 1994.Google Scholar
  16. Krause, G.H., Weis, E.: Chlorophyll fluorescence and photosynthesis: The basics.-Annu. Rev. Plant Physiol. Plant mol. Biol. 42: 313-349, 1991.Google Scholar
  17. Levitt, J.: Chilling, freezing and high temperature stress.-In: Kozlowski, T.T. (ed.): Responses of Plant to Environmental Stresses. Vol. 1.-Academic Press, New York 1980.Google Scholar
  18. Lichtenthaler, H.K.: Vegetation stress: an introduction to the stress concept in plants.-J. Plant.Physiol. 148: 4-14 1996.Google Scholar
  19. Maldonado-Rodriguez, R.: Biolyzer Software.-Bioenergetics Laboratory. University of Geneva. Switzerland. http://www.unige.ch/sciences/biologie/bioen/jipsoftware.html, 2002.Google Scholar
  20. Murashige, T., Skoog, F.: A revised medium for rapid growth and bioassays with tobacco tissue cultures.-Physiol. Plant. 15: 473-497, 1963.Google Scholar
  21. Ozaki, K., Hayashi, M.: Cryoprotective effects of cycloinulo-hexose on freezing and freeze-drying of liposomes.-Chem. Pharm. Bull. 44: 2116-2120, 1996.Google Scholar
  22. Papageorgiou, G.: Chlorophyll fluorescence: an intrinsic probe of photosynthesis.-In: Govindjee (ed.): Bioenergetics of Photosynthesis. Pp. 319-371. Academic Press, New York-San Francisco-London 1995.Google Scholar
  23. Popova, A.V.: Effect of serine on the photochemical activity of freeze-thawed thylakoid membranes.-Photosynthetica 29: 619-623, 1993.Google Scholar
  24. Popova, A.V., Busheva, M.R.: Cryoprotective effect of glycine betaine and glycerol is not based on a single mechanism.-Cryo Lett. 22: 293-298, 2001.Google Scholar
  25. Rajasheker, C.B.: Cold response and freezing tolerance in plants.-In: Wilkinson, R.E. (ed.): Plant-Environment Inter-actions. Pp. 321-341. Marcel Dekker, New York 2000.Google Scholar
  26. Rhodes, D., Hanson, A.D.: Quaternary ammonium and tertiary sulphonium compounds in higher plants.-Annu. Rev. Plant Physiol. Plant mol. Biol. 44: 357-384, 1993.Google Scholar
  27. Rudolph, A.S., Crowe, J.H., Crowe, L.M.: Effects of three sta-bilizing agents-proline, betaine, and trehalose on membrane phospholipids.-Arch. Biochem. Biophys. 245: 134-143, 1989.Google Scholar
  28. Sheveleva, E., Chmara, W., Bohnert, H.J., Jensen, R.G.: Increa-sed salt and drought tolerance by D-ononitol production in transgenic Nicotiana tabacum L.-Plant Physiol. 115: 1211-1219, 1997.Google Scholar
  29. Srivastava, A., Greppin, H., Strasser, R.J.: Acclimation of land plants to diurnal changes in temperature and light.-In: Mathis, P. (ed.): Photosynthesis: From Light to Biosphere. Vol. IV. Pp. 909-912. Kluwer Acad. Publ., Dordrecht-Boston-London 1995.Google Scholar
  30. Srivastava, A., Strasser, R.J.: Stress and stress management of land plants during regular day.-J. Plant Physiol. 148: 445-455, 1996.Google Scholar
  31. Steinmetz, M., Le Coq, D., Aymerich, S., Gonzy-Treboul, G., Gay, P.: The DNA sequence of the gene for the secreted Bacillus subtilis enzymes levansucrase and its genetic control sites.-Mol. gen. Genet. 200: 220-228, 1985.Google Scholar
  32. Strand, M., Öquist, G.: Effects of frost hardening, dehardening and freezing stress on in vivo chlorophyll fluorescence of seedlings of Scots pine (Pinus sylvestris L.).-Plant Cell Environ. 11: 231-238, 1988.Google Scholar
  33. Strasser, B.J., Strasser, R.J.: Measuring fast fluorescence transients to address environmental questions: The JIP test.-In: Mathis, P. (ed.): Photosynthesis: from Light to Biosphere. Vol. V. Pp. 977-980. Kluwer Academic Publ., Dordrecht-Boston-London 1995.Google Scholar
  34. Strasser, R.J., Srivastava, A., Govindjee: Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria.-Photochem. Photobiol. 61: 32-42, 1995.Google Scholar
  35. Strasser, R.J., Srivastava, A., Tsimilli-Michael, M.: The fluores-cence transient as a tool to characterize and screen photosyn-thetic samples.-In: Yunus, M., Pathre, U., Mohanty, P. (ed.): Probing Photosynthesis: Mechanisms, Regulation and Adap-tation. Pp. 443-483. Taylor & Francis, London-New York 2000.Google Scholar
  36. Yancey, P.H., Clark, M.E., Hand, S.C., Bowlus, R.D., Somero, G.N.: Living with water stress: Evolution of osmolyte sys-tems.-Science 217: 1214-1222, 1982.Google Scholar
  37. Yoshiba, Y., Kyosue, T., Katagiri, T., Ueda, H., Mizoguchi, T., Yamaguchi-Shinozaki, K., Wada, K., Harada, Y., Shinozaki, K.: Correlation between the induction of a gene for (1-pyrro-line-5-carboxylate-synthetase and the accumulation of proline in Arabidopsis thaliana under osmotic stress.-Plant J. 7: 751-760, 1995.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • D. Parvanova
    • 1
  • A. Popova
    • 2
  • I. Zaharieva
    • 2
  • P. Lambrev
    • 3
  • T. Konstantinova
    • 1
  • S. Taneva
    • 2
  • A. Atanassov
    • 1
  • V. Goltsev
    • 3
  • D. Djilianov
    • 1
  1. 1.SofiaBulgaria
  2. 2.Institute of BiophysicsBulgarian Academy of SciencesSofiaBulgaria
  3. 3.Department of Biophysics and Radiobiology, Faculty of BiologySofia UniversitySofiaBulgaria

Personalised recommendations