Advertisement

Pharmaceutical Research

, Volume 21, Issue 11, pp 2112–2119 | Cite as

Polyacetylenes Function as Anti-Angiogenic Agents

  • Li-Wha Wu
  • Yi-Ming Chiang
  • Hsiao-Ching Chuang
  • Sheng-Yang Wang
  • Ga-Wen Yang
  • Ya-Huey Chen
  • Ling-Ya Lai
  • Lie-Fen Shyur
Article

Abstract

Purpose. To investigate the antiangiogenic effects of plant extracts and polyacetylenes isolated from Bidens pilosa Linn., which is a popular nutraceutical herbal tea and folk medicine in anti-inflammatory, antitumor, and other medications worldwide.

Methods. Anti-cell proliferation, anti-tube formation, and cell migration assays were used for the valuation of bioactivities of target plant extracts and phytocompounds against angiogenesis. Bioactivity-guided fractionation, HPLC, and various spectral analyses were used to identify active fraction and phytocompounds for anti-angiogenesis.

Results. We show that an ethyl acetate (EA) fraction of B. pilosa exhibited significant anti-cell proliferation and anti-tube formation activities against human umbilical vein endothelium cells (HUVEC). Bioassay-guided fractionation led to isolation of one new and one known polyacetylenes, 1,2-dihydroxytrideca-5,7,9,11-tetrayne (1) and 1,3-dihydroxy-6(E)- tetradecene-8,10,12-triyne (2), respectively, from the EA fraction. Compounds 1 and 2 manifested highly specific and significant activities against HUVEC proliferation with IC50 values of 2.5 and 0.375 μg/ml, respectively, however, compound 1 had a more potent effect on preventing tube formation of HUVEC than compound 2 at a dose of 2.5 μg/ml. Western blot analysis showed that both compounds upregulated p27(Kip) or p21(Cip1), cyclin-dependent kinase inhibitors, in HUVEC.

Conclusions. This is the first report to demonstrate that polyacetylenes possess significant anti-angiogenic activities and the ability to regulate the expression of cell cycle mediators, for example, p27(Kip1), p21(Cip1), or cyclin E.

anti-angiogenic activities Bidens pilosa Linn. cell cycle mediators human umbilical vein endothelium cells (HUVEC) polyacetylenes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Folkman and Y. Shing. Angiogenesis. J. Biol. Chem. 267: 10931–10934 (1992).PubMedGoogle Scholar
  2. 2.
    J. Folkman. Angiogenesis in cancer, vascular, rheumatoid and other diseases. Nat. Med. 1:27–31 (1995).PubMedGoogle Scholar
  3. 3.
    F. Bussolino, A. Mantovani, and G. Persico. Molecular mecha-nisms of blood vessel formation. Trends Biochem. Sci. 22:251–256 (1997).PubMedGoogle Scholar
  4. 4.
    D. Hanahan. and J. Folkman. Patterns and emerging mechanisms of the angiogenic switch during tumor angiogenesis. Cell 86:353–364 (1996).CrossRefPubMedGoogle Scholar
  5. 5.
    M. S. O'Reilly, T. Boehm, Y. Shing, N. Fukai, G. Vasios, W. S. Lane, E. Flynn, J. R. Birkhead, B. R. Olsen, and J. Folkman. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88:277–285 (1997).PubMedGoogle Scholar
  6. 6.
    M. S. O'Reilly. Angiostatin: an endogenous inhibitor of angio-genesis and of tumor growth. EXS 79:273–294 (1997).PubMedGoogle Scholar
  7. 7.
    M. Yamaoka, T. Yamamoto, T. Masaki, S. Ikeyama, K. Sudo, and T. Fujita. Inhibition of tumor growth and metastasis of rodent tumors by the angiogenesis inhibitor O-(chloroacetyl-carbamoyl) fumagillol (TNP-470; AGM-1470). Cancer Res. 53:4262–4267 (1993).PubMedGoogle Scholar
  8. 8.
    V. Brower. Tumor angiogenesis-new drugs on the block. Nat. Biotechnol. 17:963–968 (1999).PubMedGoogle Scholar
  9. 9.
    P. Geissbergerand and U. Sequin. Constituents of Bidens pilosa L.: do the components found so far explain the use of this plant in traditional medicine? Acta Trop. 48:251–261 (1991).PubMedGoogle Scholar
  10. 10.
    H. W. Chin, C. C. Lin, and K. S. Tang. The hepatoprotective effects of Taiwan folk medicine ham-hong-chho in rats. Am. J. Chin. Med. 24:231–240 (1996).PubMedGoogle Scholar
  11. 11.
    R. L. Pereira, T. Ibrahim, L. Lucchetti, A. J. da Silva, and V. L. Goncalves de Moraes. Immunosuppressive and anti-inflamma-tory effects of methanolic extract and the polyacetylene isolated from Bidens pilosa L. Immunopharmacology 43:31–37 (1999).PubMedGoogle Scholar
  12. 12.
    T. Dimo, S. V. Rakotonirina, P. V. Tan, J. Azay, E. Dongo, and G. Cros. Leaf methanol extract of Bidens pilosa prevents and attenuates the hypertension induced by high-fructose diet in Wistar rats. J. Ethnopharmacol. 83:183–191 (2002).PubMedGoogle Scholar
  13. 13.
    R. P. Ubillas, C. D. Mendez, S. D. Jolad, J. Luo, S. R. King, T. J. Carlson, and D. M. Fort. Antihyperglycemic acetylenic gluco-sides from Bidens pilosa. Planta Med. 66:82–83 (2000).PubMedGoogle Scholar
  14. 14.
    M. M. Levin, V. S. Iasnetsov, A. I. Sul'zhenko, and N. F. Farash-chuk. Experience in treating alopecia areata with galenicals of Bidens triparta. Sov. Med. 10:135–136 (1974).PubMedGoogle Scholar
  15. 15.
    S. S. Mirvish, E. F. Rose, and D. M. Sutherland. Studies on the esophagus. II. Enhancement of [ 3 H]thymidine incorporation in the rat esophagus by Bidens pilosa (a plant eaten in South Africa) and by croton oil. Cancer Lett. 6:159–165 (1979).PubMedGoogle Scholar
  16. 16.
    S. S. Mirvish, S. Salmasi, T. A. Lawson, P. Pour, and D. Suther-land. Test of catechol, tannic acid, Bidens pilosa, croton oil, and phorbol for cocarcinogenesis of esophageal tumors induced in rats by methyl-n-amylnitrosamine. J. Natl. Cancer Inst. 74:1283–1290 (1985).PubMedGoogle Scholar
  17. 17.
    J. S. Chang, L. C. Chiang, C. C. Chen, L. T. Liu, K. C. Wang, and C. C. Lin. Antileukemic activity of Bidens pilosa L. var. minor (Blume) Sherff and Houttuynia cordata Thunb. Am. J. Chin. Med. 29:303–312 (2001).PubMedGoogle Scholar
  18. 18.
    Y. Sashida, K. Ogawa, M. Kitada, H. Karikome, Y. Mimaki, and H. Shimomura. New aurone glucosides and new phenylpropa-noid glucosides from Bidens pilosa. Chem. Pharm. Bull. 39:709–711 (1991).Google Scholar
  19. 19.
    L. Alvarez, S. Marquina, M. L. Villarreal, D. Alonso, E. Aranda, and G. Delgado. Bioactive polyacetylenes from Bidens pilosa. Planta Med. 62:355–357 (1996).PubMedGoogle Scholar
  20. 20.
    M. G. Brandao, A. U. Krettli, L. S. Soares, C. G. Nery, and H. C. Marinuzzi. Antimalarial activity of extracts and fractions from Bidens pilosa and other Bidens species (Asteraceae) correlated with the presence of acetylene and flavonoid compounds. J. Eth-nopharmacol. 57:131–138 (1997).Google Scholar
  21. 21.
    C. A. Zulueta, A. Zulueta, M. Tada, and C. Y. Ragasa. A diter-pene from Bidens pilosa. Phytochemistry 38:1449–1450 (1995).Google Scholar
  22. 22.
    M. G. Brandao, C. G. Nery, M. A. Mamao, and A. U. Krettli. Two methoxylated flavone glycosides from Bidens pilosa. Phyto-chemistry 48:397–399 (1998).Google Scholar
  23. 23.
    J. Wang, H. Yang, Z. W. Lin, and H. D. Sun. Flavonoids from Bidens pilosa var. radiata. Phytochemistry 46:1275–1278 (1997).Google Scholar
  24. 24.
    G. Rucker, S. Kehrbaum, H. Sakulas, B. Lawong, and F. Goelten-both. Acetylenic glucosides from Microglossa pyrifolia. Planta Med. 58:266–269 (1992).PubMedGoogle Scholar
  25. 25.
    E. A. Jaffe, R. L. Nachman, C. G. Becker, and C. R. Minick. Culture of human endothelial cells derived from umbilical veins. J. Clin. Invest. 52:2745–2756 (1973).PubMedGoogle Scholar
  26. 26.
    P. Boukamp, R. T. Petrussevska, D. Breitkreutz, J. Hornung, A. Markham, and N. E. Fusenig. Normal keratinization in a spon-taneously immortalized aneuploid human keratinocyte cell line. J. Cell Biol. 106:761–771 (1988).PubMedGoogle Scholar
  27. 27.
    R. Montesano, L. Orci, and P. Vassalli. In vitro rapid organiza-tion of endothelial cells into capillary-like networks is promoted by collagen matrices. J. Cell Biol. 97:1648–1652 (1983).PubMedGoogle Scholar
  28. 28.
    M. Jang, L. Cai, G. O. Udeani, K. V. Slowing, C. F. Thomas, C. W. Beecher, H. H. Fong, N. R. Farnsworth, A. D. Kinghorn, R. G. Mehta, R. C. Moon, and J. M. Pezzuto. Cancer chemopreven-tive activity of resveratrol, a natural product derived from grapes. Science 275:218–220 (1997).CrossRefPubMedGoogle Scholar
  29. 29.
    J. A. Rose and C. M. Kasum. Dietary flavonoids: bioavailability, metabolic effects, and safety. Annu. Rev. Nutr. 22:19–34 (2002).PubMedGoogle Scholar
  30. 30.
    K. Igura, T. Ohta, Y. Kuroda, and K. Kaji. Resveratrol and quer-cetin inhibit angiogenesis in vitro. Cancer Lett. 171:11–16 (2001).Google Scholar
  31. 31.
    C. J. Sherr. G1 phase progression: cycling on cue. Cell 79:551–555 (1994).CrossRefPubMedGoogle Scholar
  32. 32.
    K. H. Vousden. Switching from life to death: the Miz-ing link between Myc and p53. Cancer Cell 2:351–352 (2002).PubMedGoogle Scholar
  33. 33.
    L. Hengstand and S. I. Reed. Inhibitors of the Cip/Kip family. Curr. Top. Microbiol. Immunol. 227:25–41 (1998).PubMedGoogle Scholar
  34. 34.
    D. Goukassian, A. Diez-Juan, T. Asahara, P. Schratzberger, M. Silver, T. Murayama, J. M. Isner, and V. Andres. Overexpression of p27(Kip1) by doxycycline-regulated adenoviral vectors inhibits endothelial cell proliferation and migration and impairs angio-genesis. FASEB J. 15:1877–1885 (2001).PubMedGoogle Scholar
  35. 35.
    S. B. Parker, G. Eichele, P. Zhang, A. Rawls, A. T. Sands, A. Bradley, E. N. Olson, J. W. Harper, and S. J. Elledege. p53-independent expression of p21 Cip1 in muscle and other terminally differentiating cells. Science 267:1024–1027 (1995).PubMedGoogle Scholar
  36. 36.
    W. S. El-Deiry. WAF1/CIP1 is induced in p53-mediated G1 ar-rest and apoptosis. Cancer Res. 54:1169–1174 (1994).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2004

Authors and Affiliations

  • Li-Wha Wu
    • 1
  • Yi-Ming Chiang
    • 2
  • Hsiao-Ching Chuang
    • 1
  • Sheng-Yang Wang
    • 2
  • Ga-Wen Yang
    • 1
  • Ya-Huey Chen
    • 3
  • Ling-Ya Lai
    • 1
  • Lie-Fen Shyur
    • 2
  1. 1.Institute of Molecular MedicineNational Cheng Kung University Medical CollegeTainan, TaiwanRepublic of China
  2. 2.Institute of BioAgricultural Sciences, Academia Sinica, TaipeiTaiwanRepublic of China
  3. 3.Institute of Basic Medical SciencesNational Cheng Kung University Medical College, TainanTaiwanRepublic of China

Personalised recommendations