Pharmaceutical Research

, Volume 21, Issue 11, pp 2085–2094 | Cite as

Effects of An E-cadherin-Derived Peptide on the Gene Expression of Caco-2 Cells

  • Anna Maria Calcagno
  • Jennifer M. Fostel
  • Eric L. Reyner
  • Ernawati Sinaga
  • James T. Alston
  • William B. Mattes
  • Teruna J. Siahaan
  • Joseph A. Ware


Purpose. The goal of this study was to determine the effects of exposure to an HAV peptide (Ac-SHAVSS-NH2) on the protein and gene expression in Caco-2 cells, a model for the intestinal mucosa.

Methods. Caco-2 cells were incubated with either 100 or 500 μM of the hexapeptide then evaluated over a 48-h time period.

Results. Cell detachment from the monolayer was seen only after 48 h of exposure to the peptide, with the greatest effects occurring with a peptide concentration of 500 μM. Total protein expression of E-cadherin showed a decrease of nearly 20% at the 24-h time point for each concentration examined, whereas no significant changes were detected at the other time points studied. Short term exposure to a 500 μM solution of Ac-SHAVSS-NH2 caused few changes in gene expression as determined by Affymetrix GeneChip⌖ microarrays; however, longer exposure periods produced numerous changes in the treated cells. The variations in mRNA expression indicate that this HAV peptide has an effect in the E-cadherin signaling pathways. The greatest increases in mRNA expression were found in genes regulating excretion or degradation of the peptide.

Conclusions. This work suggests that this HAV peptide produces effects that reach beyond modulation of adhesion.

Caco-2 cells E-cadherin gene expression HAV peptide microarrays 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. R. Alattia, H. Kurokawa, and M. Ikura. Structural view of cadherin-mediated cell-cell adhesion. Cell. Mol. Life Sci. 55:359–367 (1999).PubMedGoogle Scholar
  2. 2.
    M. Takeichi. Cadherins: a molecular family important in selective cell-cell adhesion. Annu. Rev. Biochem. 59:237–252 (1990).PubMedGoogle Scholar
  3. 3.
    F. Fagotto and B. M. Gumbiner. Cell contact-dependent signaling. Dev. Biol. 180:445–454 (1996).PubMedGoogle Scholar
  4. 4.
    A. E. Aplin, A. Howe, S. K. Alahari, and R. L. Juliano. Signal transduction and signal modulation by cell adhesion receptors: the role of integrins, cadherins, immunoglobulin-cell adhesion molecules, and selectins. Pharmacol. Rev. 50:197–263 (1998).PubMedGoogle Scholar
  5. 5.
    O. W. Blaschuk, R. Sullivan, S. David, and Y. Pouliot. Identification of a cadherin cell adhesion recognition sequence. Dev. Biol. 139:227–229 (1990).PubMedGoogle Scholar
  6. 6.
    J. Willems, E. Bruyneel, V. Noe, H. Slegers, A. Zwijsen, R. M. Mege, and M. Mareel. Cadherin-dependent cell aggregation is affected by decapeptide derived from rat extracellular super-oxide dismutase. FEBS Lett. 363:289–292 (1995).PubMedGoogle Scholar
  7. 7.
    K. L. Lutz and T. J. Siahaan. Modulation of the cellular junctions protein E-cadherin in bovine brain microvessel endothelial cells by cadherin peptides. Drug Deliv. 10:187–193 (1997).Google Scholar
  8. 8.
    D. Pal, K. L. Audus, and T. J. Siahaan. Modulation of cellular adhesion in bovine brain microvessel endothelial cells by a decapeptide. Brain Res. 747:103–113 (1997).PubMedGoogle Scholar
  9. 9.
    V. Noe, J. Willems, J. Vandekerckhove, F. V. Roy, E. Bruyneel, and M. Mareel. Inhibition of adhesion and induction of epithelial cell invasion by HAV-containing E-cadherin-specific peptides. J. Cell Sci. 112:127–135 (1999).PubMedGoogle Scholar
  10. 10.
    E. Sinaga, S. D. Jois, M. Avery, and I. T. Makagiansar. U. S. Tambunan, K. L. Audus and T. J. Siahaan. Increasing paracellular porosity by E-cadherin peptides: discovery of bulge and groove regions in the EC1-domain of E-cadherin. Pharm. Res. 19:1170–1179 (2002).PubMedGoogle Scholar
  11. 11.
    I. T. Makagiansar, M. Avery, Y. Hu, K. L. Audus, and T. J. Siahaan. Improving the selectivity of HAV-peptides in modulating E-cadherin-E-cadherin interactions in the intercellular junc-tion of MDCK cell monolayers. Pharm. Res. 18:446–453 (2001).PubMedGoogle Scholar
  12. 12.
    I. Vietor, T. Bader, K. Paiha, and L. A. Huber. Perturbation of the tight junction permeability barrier by occludin loop peptides activates ta-catenin/TCF/LEF-mediated transcription. EMBO Rep. 2:306–312 (2001).Google Scholar
  13. 13.
    R. Gauthier, C. Harnois, J.-F. Drolet, J. C. Reed, A. Vezina, and P. H. Vachon. Human intestinal epithelial cell survival: differentiation state-specific control mechanisms. Am. J. Physiol. Cell Physiol. 280:C1540–C1554 (2001).PubMedGoogle Scholar
  14. 14.
    B. D. Angst, C. Marcozzi, and A. I. Magee. The cadherin superfamily: diversity in form and function. J. Cell Sci. 114:629–641 (2001).PubMedGoogle Scholar
  15. 15.
    M. J. Cho, D. P. Thompson, C. T. Cramer, T. J. Vidmar, and J. F. Scieszka. The Madin Darby canine kidney (MDCK) epithelial cell monolayer as a model cellular transport barrier. Pharm. Res. 6:71–77 (1989).PubMedGoogle Scholar
  16. 16.
    P. Artursson. Epithelial transport of drugs in cell culture. I: A model for studying the passive diffusion of drugs over intestinal absorptive (Caco-2) cells. J. Pharm. Sci. 79:476–482 (1990).PubMedGoogle Scholar
  17. 17.
    M. R. Bootcov, A. R. Bauskin, S. M. Valenzuela, A. G. Moore, M. Bansal, X. Y. He, H. P. Zhang, M. Donnellan, S. Mahler, K. Pryor, B. J. Walsh, R. C. Nicholson, W. D. Fairlie, S. B. Por, J. M. Robbins, and S. N. Breit. MIC-1, a novel macrophage inhibitory cytokine, is a divergent member of the TGF-beta superfamily. Proc. Natl. Acad. Sci. USA 94:11514–11519 (1997).PubMedGoogle Scholar
  18. 18.
    P. X. Li, J. Wong, A. Ayed, D. Ngo, A. M. Brade, C. Arrowsmith, R. C. Austin, and H. J. Klamut. Placental transforming growth factor-beta is a downstream mediator of the growth arrest and apoptotic response of tumor cells to DNA damage and p53 over-expression. J. Biol. Chem. 275:20127–20135 (2000).PubMedGoogle Scholar
  19. 19.
    K. Melen, P. Keskinen, T. Ronni, T. Sareneva, K. Lounatmaa, and I. Julkunen. Human MxB protein, an interferon-alpha-inducible GTPase, contains a nuclear targeting signal and is localized in the heterochromatin region beneath the nuclear envelope. J. Biol. Chem. 271:23478–23486 (1996).PubMedGoogle Scholar
  20. 20.
    M. Dean, A. Rzhetsky, and R. Allikmets. The human ATP-binding cassette (ABC) transporter superfamily. Genome Res. 11:1156–1166 (2001).PubMedGoogle Scholar
  21. 21.
    S. Saunier, J. Calado, R. Heilig, F. Silbermann, F. Benessy, G. Morin, M. Konrad, M. Broyer, M. C. Gubler, J. Weissenbach, and C. Antignac. A novel gene that encodes a protein with a putative src homology 3 domain is a candidate gene for familial juvenile nephronophthisis. Hum. Mol. Genet. 6:2317–2323 (1997).PubMedGoogle Scholar
  22. 22.
    X. Z. Ding, G. C. Tsokos, and J. G. Kiang. Overexpression of HSP-70 inhibits the phosphorylation of HSF1 by activating protein phosphatase and inhibiting protein kinase C activity. FASEB J. 12:451–459 (1998).PubMedGoogle Scholar
  23. 23.
    M. S. Denison and J. P. Whitlock Jr. Xenobiotic-inducible tran-scription of cytochrome P450 genes. J. Biol. Chem. 270:18175–18178 (1995).PubMedGoogle Scholar
  24. 24.
    D. Stapleton, K. I. Mitchelhill, G. Gao, J. Widmer, B. J. Michell, T. Teh, C. M. House, C. S. Fernandez, T. Cox, L. A. Witters, and B. E. Kemp. Mammalian AMP-activated protein kinase subfamily. J. Biol. Chem. 271:611–614 (1996).PubMedGoogle Scholar
  25. 25.
    E. Bergin, J. S. Levine, J. S. Koh, and W. Lieberthal. Mouse proximal tubular cell-cell adhesion inhibits apoptosis by a cadherin-dependent mechanism. Am. J. Physiol. Renal Physiol. 278:F758–F768 (2000).PubMedGoogle Scholar
  26. 26.
    M. Beatch, L. A. Jesaitis, W. J. Gallin, D. A. Goodenough, and B. R. Stevenson. The tight junction protein ZO-2 contains three PDZ (PSD-95/Discs-Large/ZO-1) domains and an alternatively spliced region. J. Biol. Chem. 271:25723–25726 (1996).PubMedGoogle Scholar
  27. 27.
    T. Tanaka, D. A. Parry, V. Klaus-Kovtun, P. M. Steinert, and J. R. Stanley. Comparison of molecularly cloned bullous pemphigoid antigen to desmoplakin I confirms that they define a new family of cell adhesion junction plaque proteins. J. Biol. Chem. 266:12555–12559 (1991).PubMedGoogle Scholar
  28. 28.
    H. Hong, L. Yang, and M. R. Stallcup. Hormone-independent transcriptional activation and coactivator binding by novel orphan nuclear receptor ERR3. J. Biol. Chem.274:22618–22626 (1999).PubMedGoogle Scholar
  29. 29.
    T. Kayano, C. F. Burant, H. Fukumoto, G. W. Gould, Y. S. Fan, R. L. Eddy, M. G. Byers, T. B. Shows, S. Seino, and G. I. Bell. Human facilitative glucose transporters. Isolation, functional characterization, and gene localization of cDNAs encoding an isoform (GLUT5) expressed in small intestine, kidney, muscle, and adipose tissue and an unusual glucose transporter pseudo-gene-like sequence (GLUT6). J. Biol. Chem. 265:13276–13282 (1990).PubMedGoogle Scholar
  30. 30.
    F. Korioth, C. Gieffers, and J. Frey. Cloning and characterization of the human gene encoding aspartyl beta-hydroxylase. Gene 150:395–399 (1994).PubMedGoogle Scholar
  31. 31.
    T. Saitoh, J. Moriwaki, J. Koike, A. Takagi, T. Miwa, K. Shiokawa, and M. Katoh. Molecular cloning and characterization of FRAT2, encoding a positive regulator of the WNT signaling pathway. Biochem. Biophys. Res. Commun. 281:815–820 (2001).PubMedGoogle Scholar
  32. 32.
    S. K. Bohm, W. Kong, D. Bromme, S. P. Smeekens, D. C. Anderson, A. Connolly, M. Kahn, N. A. Nelken, S. R. Coughlin, D. G. Payan, and N. W. Bunnett. Molecular cloning, expression and potential functions of the human proteinase-activated receptor-2. Biochem. J. 314:1009–1016 (1996).PubMedGoogle Scholar
  33. 33.
    S. Nystedt, K. Emilsson, and C. Wahlestedt. and J. Sundelin. Molecular cloning of a potential proteinase activated receptor. Proc. Natl. Acad. Sci. USA 91:9208–9212 (1994).PubMedGoogle Scholar
  34. 34.
    E. M. Kajkowski, C. F. Lo, X. Ning, S. Walker, H. J. Sofia, W. Wang, W. Edris, P. Chanda, E. Wagner, S. Vile, K. Ryan, B. McHendry-Rinde, S. C. Smith, A. Wood, K. J. Rhodes, J. D. Kennedy, J. Bard, J. S. Jacobsen, and B. A. Ozenberger. beta-Amyloid peptide-induced apoptosis regulated by a novel protein containing a g protein activation module. J. Biol. Chem. 276: 18748–18756 (2001).PubMedGoogle Scholar
  35. 35.
    E. Labbe, A. Letamendia, and L. Attisano. Association of Smads with lymphoid enhancer binding factor 1/T cell-specific factor mediates cooperative signaling by the transforming growth factor-beta and wnt pathways. Proc. Natl. Acad. Sci. USA 97:8358–8363 (2000).PubMedGoogle Scholar
  36. 36.
    Y. C. Tian and A. O. Phillips. Interaction between the transforming growth factor-beta type II receptor/Smad pathway and beta-catenin during transforming growth factor-beta1-mediated adherens junction disassembly. Am. J. Pathol. 160:1619–1628 (2002).PubMedGoogle Scholar
  37. 37.
    E. T. Kipreos and M. Pagano. The F-box protein family. Genome Biol. 1:3002.1-3002.7 (2000).Google Scholar
  38. 38.
    Y. Fujita, G. Krause, M. Scheffner, D. Zechner, H. E. Leddy, J. Behrens, T. Sommer, and W. Birchmeier. Hakai, a c-Cbl-like protein, ubiquitinates and induces endocytosis of the E-cadherin complex. Nat. Cell Biol. 4:222–231 (2002).PubMedGoogle Scholar
  39. 39.
    S. Wiemann, B. Weil, R. Wellenreuther, J. Gassenhuber, S. Glassl, W. Ansorge, M. Bocher, H. Blocker, S. Bauersachs, H. Blum, J. Lauber, A. Dusterhoft, A. Beyer, K. Kohrer, N. Strack, H. W. Mewes, B. Ottenwalder, B. Obermaier, J. Tampe, D. Heubner, R. Wambutt, B. Korn, M. Klein, and A. Poustka. Toward a catalog of human genes and proteins: sequencing and analysis of 500 novel complete protein coding human cDNAs. Genome Res. 11:422–435 (2001).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2004

Authors and Affiliations

  • Anna Maria Calcagno
    • 1
    • 2
  • Jennifer M. Fostel
    • 3
    • 4
  • Eric L. Reyner
    • 3
    • 5
  • Ernawati Sinaga
    • 1
  • James T. Alston
    • 3
    • 5
  • William B. Mattes
    • 3
    • 6
  • Teruna J. Siahaan
    • 1
  • Joseph A. Ware
    • 3
    • 7
  1. 1.Department of Pharmaceutical ChemistryThe University of KansasLawrenceUSA
  2. 2.National Cancer InstituteBethesdaUSA
  3. 3.Pharmacia CorporationKalamazooUSA
  4. 4.Alpha-Gamma Technologies, Inc.RaleighUSA
  5. 5.PfizerLa JollaUSA
  6. 6.Gene LogicGaithersburgUSA
  7. 7.Pfizer Global Research and DevelopmentAnn ArborUSA

Personalised recommendations