Pharmaceutical Research

, Volume 21, Issue 9, pp 1680–1685 | Cite as

Role of PEPT2 in the Choroid Plexus Uptake of Glycylsarcosine and 5-Aminolevulinic Acid: Studies in Wild-Type and Null Mice

  • Scott M. Ocheltree
  • Hong Shen
  • Yongjun Hu
  • Jianming Xiang
  • Richard F. Keep
  • David E. Smith


Purpose. To determine the importance of PEPT2 in the uptake of glycylsarcosine (GlySar) and 5-aminolevulinic acid (5-ALA) in mouse choroid plexus whole tissue.

Methods. Uptake studies were performed in bicarbonate artificial cerebrospinal fluid buffer using choroid plexuses isolated from PEPT2+/+ and PEPT2-/- mice. [14C]GlySar and [14C]5-ALA were studied as a function of temperature, concentration, potential inhibitors, and low sodium conditions.

Results. PEPT2-/- mice exhibited a 90% reduction in GlySar uptake (p < 0.001) and a 92% reduction in 5-ALA uptake (p < 0.001) as compared to wild type animals. At 4°C (vs. 37°C), GlySar uptake was reduced by 95% in PEPT2+/+ mice; no difference was observed in null animals. Unlabeled GlySar inhibited the uptake of [14C]GlySar in PEPT2+/+ mice (p < 0.01); self-inhibition did not occur in PEPT2-/- mice. GlySar demonstrated saturable uptake in PEPT2+/+ mice (Vmax = 16.4 pmol mg−1 min−1, Km = 70 μM, Kd = 0.014 μl mg−1 min−1), however, uptake was linear in PEPT2-/- mice (Kd = 0.023 μl mg−1 min−1). Low sodium buffer (1 mM) resulted in 75% and 59% reductions, respectively, in GlySar (p < 0.001) and 5-ALA (p < 0.01) uptake in PEPT2+/+ mice; no differences were observed in PEPT2-/- mice. Overall, about 90-95% of the choroid plexus uptake of GlySar and 5-ALA was mediated by PEPT2, with about 5-10% of the residual uptake occurring by nonspecific mechanisms.

Conclusions. The results demonstrate that PEPT2 is the only transporter responsible for the choroid plexus uptake of GlySar and 5-ALA. They also suggest a role for PEPT2 in the clearance of dipeptides and endogenous peptidomimetics from cerebrospinal fluid.

5-ALA choroid plexus GlySar knockout mouse PEPT2 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. M. Wright. Transport processes in the formation of the cerebrospinal fluid. Rev. Physiol. Biochem. Pharmacol. 83:3-34 (1978).Google Scholar
  2. 2.
    M. Bradbury. The Concept of a Blood-Brain Barrier, John Wiley & Sons, New York, 1979, pp. 38-60.Google Scholar
  3. 3.
    D. Herrera-Ruiz and G. T. Knipp. Current perspectives on established and putative mammalian oligopeptide transporters. J. Pharm. Sci. 92:691-714 (2002).Google Scholar
  4. 4.
    W. Liu, R. Liang, S. Ramamoorthy, Y.-J. Fei, M. E. Ganapathy, M. A. Hediger, V. Ganapathy, and F. H. Leibach. Molecular cloning of PEPT2, a new member of the H +/peptide cotransporter family, from human kidney. Biochim. Biophys. Acta 1235: 461-466 (1995).Google Scholar
  5. 5.
    H. Daniel and M. Herget. Cellular and molecular mechanisms of renal peptide transport. Am. J. Physiol. 273:F1-F8 (1997).Google Scholar
  6. 6.
    U. V. Berger and M. A. Hediger. Distribution of peptide transporter PEPT2 mRNA in the rat nervous system. Anat. Embryol. 199:439-449 (1999).Google Scholar
  7. 7.
    S. Choudhuri, N. J. Cherrington, N. Li, and C. D. Klaassen. Constitutive expression of various xenobiotics and endobiotic transporter mRNAs in the choroid plexus of rats. Drug Metab. Dispos. 31:1337-1345 (2003).Google Scholar
  8. 8.
    A. Novotny, J. Xiang, W. Stummer, N. S. Teuscher, D. E. Smith, and R. F. Keep. Mechanisms of 5-aminolevulinic acid uptake at the choroid plexus. J. Neurochem. 75:321-328 (2000).Google Scholar
  9. 9.
    C. Shu, H. Shen, N. S. Teuscher, P. J. Lorenzi, R. F. Keep, and D. E. Smith. Role of PEPT2 in peptide/mimetic trafficking at the blood-cerebrospinal fluid barrier: Studies in rat choroid plexus epithelial cells in primary culture. J. Pharmacol. Exp. Ther. 301: 820-829 (2002).Google Scholar
  10. 10.
    N. S. Teuscher, A. Novotny, R. F. Keep, and D. E. Smith. Functional evidence for the presence of PEPT2 in rat choroid plexus: Studies with glycylsarcosine. J. Pharmacol. Exp. Ther. 294:494-499 (2000).Google Scholar
  11. 11.
    N. S. Teuscher, R. F. Keep, and D. E. Smith. PEPT2-mediated uptake of neuropeptides in rat choroid plexus. Pharm. Res. 18: 807-813 (2001).Google Scholar
  12. 12.
    S. M. Ocheltree, H. Shen, Y. Hu, J. Xiang, R. F. Keep, and D. E. Smith. Mechanisms of cefadroxil uptake in the choroid plexus: Studies in wild-type and PEPT2 knockout mice. J. Pharm. Exp. Ther. 308:462-467 (2004).Google Scholar
  13. 13.
    H. Shen, D. E. Smith, R. F. Keep, J. Xiang, and F. C. Brosius III. Targeted disruption of the PEPT2 gene markedly reduces dipeptide uptake in choroid plexus. J. Biol. Chem. 278:4786-4791 (2003).Google Scholar
  14. 14.
    N. S. Teuscher, H. Shen, C. Shu, J. Xiang, R. F. Keep, and D. E. Smith. Carnosine uptake in rat choroid plexus primary cell cultures and choroid plexus whole tissue from PEPT2 null mice. J. Neurochem. 89:375-382 (2004).Google Scholar
  15. 15.
    T. Yamashita, S. Shimada, W. Guo, K. Sato, E. Kohmura, T. Hayakawa, T. Takagi, and M. Tohyama. Cloning and functional expression of a brain peptide/histidine transporter. J. Biol. Chem. 272:10205-10211 (1997).Google Scholar
  16. 16.
    I. Rubio-Aliaga, I. Frey, M. Boll, D. Groneberg, H. M. Eichinger, R. Balling, and H. Daniel. Targeted disruption of the peptide transporter Pept2 gene in mice defined its physiological role in the kidney. Mol. Cell. Biol. 23:3247-3252 (2003).Google Scholar
  17. 17.
    F. Döring, J. Walter, J. Will, M. Föcking, M. Boll, S. Amasheh, W. Clauss, and H. Daniel. Delta-aminolevulinic acid transport by intestinal and renal peptide transporters and its physiological and clinical implications. J. Clin. Invest. 101:2761-2767 (1998).Google Scholar
  18. 18.
    S. R. Ennis, A. Novotny, J. Xiang, P. Shakui, T. Masada, W. Stummer, D. E. Smith, and R. F. Keep. Transport of 5-amino-levulinic acid between blood and brain. Brain Res. 959:226-234 (2003).Google Scholar
  19. 19.
    R. F. Keep and J. Xiang. N-system amino acid transport at the blood-CSF-barrier. J. Neurochem. 65:2571-2576 (1995).Google Scholar
  20. 20.
    J. Arakawa and A. Hara. Effect of 5-(N,N-Dimethyl)-amiloride, a specific inhibitor of Na(+)/H(+) exchanger, on the palmitoyl-L-carnitine-induced mechanical and metabolic derangements in the isolated perfused rat heart. Pharmacol. 59:239-248 (1999).Google Scholar
  21. 21.
    L. Mirossay, A. Mirossay, E. Kocisova, I. Radvakova, P. Miskovsky, and J. Mojzis. Hypericin-induced phototoxicity of human leukemic cell line HL-60 is potentiated by omeperazole, an inhibitor of H+ K+-ATPase and 5′-(N,N-dimethyl)-amiloride, an inhibitor of Na+ /H+ exchanger. Physiol. Res. 48:135-141 (1999).Google Scholar
  22. 22.
    H. Daniel. Function and molecular structure of brush border membrane peptide/H+ symporters. J. Membr. Biol. 154:197-203 (1996).Google Scholar
  23. 23.
    I. Rubio-Aliaga and H. Daniel. Mammalian peptide transporters as targets for drug delivery. Trends Pharmacol. Sci. 23:434-440 (2002).Google Scholar
  24. 24.
    A. Gorchein and R. Webber. δ-Aminolevulinic acid in plasma, cerebrospinal fluid, saliva and erythrocytes: Studies in normal, uraemic and porphyric subjects. Clin. Sci. 72:103-112 (1987).Google Scholar
  25. 25.
    K. Sakata, T. Yamashita, M. Maeda, Y. Moriyama, S. Shimada, and M. Tohyama. Cloning of a lymphatic peptide/histidine transporter. J. Biochem. 356:53-60 (2001).Google Scholar
  26. 26.
    S. M. Ocheltree, R. F. Keep, H. Shen, D. Yang, B. A. Hughes, and D. E. Smith. Preliminary investigation into the expression of proton-coupled oligopeptide transporters in neural retina and retinal pigment epithelium (RPE): Lack of functional activity in RPE plasma membranes. Pharm. Res. 20:1364-1372 (2003).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2004

Authors and Affiliations

  • Scott M. Ocheltree
    • 1
  • Hong Shen
    • 1
  • Yongjun Hu
    • 1
  • Jianming Xiang
    • 2
  • Richard F. Keep
    • 2
  • David E. Smith
    • 1
  1. 1.Department of Pharmaceutical SciencesThe University of MichiganAnn ArborUSA
  2. 2.Departments of Neurosurgery and PhysiologyThe University of MichiganAnn ArborUSA

Personalised recommendations