Advertisement

Pharmaceutical Research

, Volume 21, Issue 9, pp 1622–1630 | Cite as

Metabolism and Disposition of the HIV-1 Protease Inhibitor Lopinavir (ABT-378) Given in Combination with Ritonavir in Rats, Dogs, and Humans

  • Gondi N. Kumar
  • Venkata K. Jayanti
  • Marianne K. Johnson
  • John Uchic
  • Samuel Thomas
  • Ronald D. Lee
  • Brian A. Grabowski
  • Hing L. Sham
  • Dale J. Kempf
  • Jon F. Denissen
  • Kennan C. Marsh
  • Eugene Sun
  • Stanley A. Roberts
Article

Abstract

Purpose. The objective of this study was to examine the metabolism and disposition of the HIV protease inhibitor lopinavir in humans and animal models.

Methods. The plasma protein binding of [14C]lopinavir was examined in vitro via equilibrium dialysis technique. The tissue distribution of radioactivity was examined in rats dosed with [14C]lopinavir in combination with ritonavir. The metabolism and disposition of [14C]lopinavir was examined in rats, dogs, and humans given alone (in rats only) or in combination with ritonavir.

Results. The plasma protein binding of lopinavir was high in all species (97.4-99.7% in human plasma), with a concentration-dependent decrease in binding. Radioactivity was extensively distributed into tissues, except brain, in rats. On oral dosing to rats, ritonavir was found to increase the exposure of lopinavir-derived radioactivity 13-fold. Radioactivity was primarily cleared via the hepato-biliary route in all species (>82% of radioactive dose excreted via fecal route), with urinary route of elimination being significant only in humans (10.4% of radioactive dose). Oxidative metabolites were the predominant components of excreted radioactivity. The predominant site of metabolism was found to be the carbon-4 of the cyclic urea moiety, with subsequent secondary metabolism occurring on the diphenyl core moiety. In all the three species examined, the primary component of plasma radioactivity was unchanged lopinavir (>88%) with small amounts of oxidative metabolites.

Conclusions. Lopinavir was subject to extensive metabolism in vivo. Co-administered ritonavir markedly enhanced the pharmacokinetics of lopinavir-derived radioactivity in rats, probably due to inhibition of presystemic and systemic metabolism, leading to an increased exposure to this potent HIV protease inhibitor.

ABT-378 drug-drug interactions HIV protease inhibitors lopinavir ritonavir 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    N. A. Roberts, J. A. Martin, D. Kinchington, A. V. Broadhurst, J. C. Craig, I. B. Duncan, S. A. Galpin, B. K. Handa, J. Kay, A. Krhn, R. W. Lambert, J. H. Merrett, J. S. Mills, K. E. B. Parkes, S. Redshaw, A. J. Ritchie, D. L. Taylor, G. J. Thomas, and P. J. Machin. Rational design of peptide-based HIV proteinase inhibitors. Science 248:358-361 (1990).Google Scholar
  2. 2.
    J. P. Vacca, B. Borsey, W. A. Schleif, R. B. Levin, S. L. McDaniel, P. L. Darke, J. Zugay, J. C. Quintero, O. M. Blahy, E. Roth, V. V. Sardana, A. J. Schlabach, P. I. Graham, J. H. Condra, L. Gotlib, M. K. Holloway, J. Lin, L.-W. Chen, K. Vastag, D. Ostovic, P. S. Anderson, E. A. Emini, and J. R. Huff. L-735-524: An orally bioavailable human immunodeficiency virus type I protease inhibitor. Proc. Natl. Acad. Sci. USA 91:4096-4100 (1994).Google Scholar
  3. 3.
    S. A. Danner, A. Carr, J. M. Leonard, L. M. Lehman, F. Gudiol, J. Gonzalez, A. Raventos, R. Rubio, E. Bouza, V. Pintado, A. Gill Aguado, and J. C. C. Garcia de Lomas Delgrado Jr. Borieffs, A. Hsu, J. Valdes, C. A. B. Boucher, and D. A. Cooper. A shortterm study of the safety, pharmacokinetics and efficacy of RVR, an inhibitor of HIV-1 protease. N. Engl. J. Med. 333:1528-1533 (1995).Google Scholar
  4. 4.
    D. J. Kempf, K. C. Marsh, J. F. Denissen, E. McDonald, S. Vasavanonda, C. A. Flentge, B. E. Green, L. Fina, C. H. Park, X.-P. Kong, N. E. Wieburg, A. Salvidar, L. Ruiz, W. M. Kati, H. L. Sham, T. Robins, K. D. Stewart, A. Hsu, J. J. Plattner, J. M. Leonard, and D. W. Norbeck. ABT-538 is a potent inhibitor of human immunodeficiency virus protease and has high oral bioavailability in humans. Proc. Natl. Acad. Sci. USA 92:2484-2488 (1995).Google Scholar
  5. 5.
    A. K. Patick, H. Mo, M. Markowitz, T. Appel, B. Wu, L. Musick, V. Kalish, S. Kaldor, S. Reich, D. Ho, and S. Webber. Antiviral and resistance studies of AG1343, an orally bioavailable inhibitor of human immunodeficiency virus protease. Antimicrob. Agents Chemother. 40:292-297 (1996).Google Scholar
  6. 6.
    J. P. Vacca and J. H. Condra. Clinically effective HIV-1 protease inhibitors. Drug Discov. Today 2:261-272 (1997).Google Scholar
  7. 7.
    A. Molla, M. Korneyeva, Q. Gao, S. Vasavanonda, P. J. Schipper, H.-M. Mo, M. Markowitz, T. Chernyavsky, T. P. Niu, N. Lyons, A. Hsu, G. R. Granneman, D. D. Ho, C. A. B. Boucher, J. M. Leonard, D. W. Norbeck, and D. J. Kempf. Ordered accumulation of mutations in HIV protease confers resistance to ritonavir. Nat. Med. 2:760-766 (1996).Google Scholar
  8. 8.
    H. Sham, D. J. Kempf, A. Molla, K. C. Marsh, G. N. Kumar, C. M. Chen, W. Kati, K. Stewart, R. Lal, A. Hsu, D. Betebenner, M. Korneyeva, S. Vasavanonda, E. McDonald, A. Saldivar, N. Wideburg, X. Chen, P. Niu, C. Park, V. Jayanti, B. Grabowski, G. R. Granneman, E. Sun, A. J. Japour, J. Plattner, and D. Norbeck. LVR, a highly potent inhibitor of the human immunodeficiency virus protease. Anitmicrob. Agents Chemother. 42:3218-3234 (1998).Google Scholar
  9. 9.
    K. Marsh, E. McDonald, H. Sham, D. Kempf, and D. Norbeck. Enhancement of LVR pharmacokinetics when administered in combination with RVR. Proceedings of 4th Conference on Retroviruses and Opportunistic Infections, January 1997, Abstract 210 (1997).Google Scholar
  10. 10.
    G. N. Kumar, A. D. Rodrigues, A. M. Buko, and J. F. Denissen. Cytochrome P450-mediated metabolism of the HIV-1 protease inhibitor ritonavir (ABT-538) in human liver microsomes. J. Pharmacol. Exp. Ther. 277:423-431 (1996).Google Scholar
  11. 11.
    G. N. Kumar, J. Dykstra, E. M. Roberts, V. Jayanti, D. Hickman, J. Uchic, Y. Yao, B. Surber, S. Thomas, and G. R. Granneman. Potent inhibition of the cytochrome P450 3A-mediated human liver microsomal metabolism of a novel HIV protease inhibitor by ritonavir–a positive drug-drug interaction. Drug Metab. Dispos. 27:902-908 (1999).Google Scholar
  12. 12.
    R. A. Lal, A. Hsu, P. Chen, S. Dennis, T. El-Shourbagy, C. Locke, W. Lam, A. Japour, J. Leonard, G. R. Granneman, and E. Sun. Single dose pharmacokinetics of LVR in combination with ritonavir. 37th Interscience Conference on Antimicrobial Agents and Chemotherapy, September 1997, Abstract Number I-194 (1997).Google Scholar
  13. 13.
    M. Hurst and D. Faulds. Lopinavir. Drugs 60:1371-1379 (2000).Google Scholar
  14. 14.
    J. L. Miller. FDA approves new protease inhibitor for HIV infection. Am. J. Health Syst. Pharm. 57:1942 (2000).Google Scholar
  15. 15.
    G. N. Kumar, V. Jayanti, R. D. Lee, D. N. Whittern, J. Uchic, S. Thomas, P. Johnson, B. Grabowski, H. Sham, D. Betebenner, D. J. Kempf, and J. F. Denissen. In vitro metabolism of the HIV-1 protease inhibitor LVR: species comparison and metabolite identification. Drug Metab. Dispos. 27:86-91 (1999).Google Scholar
  16. 16.
    R. A. Lal, A. Hsu, G. R. Granneman, T. El-Shourbagy, M. Johnson, W. Lam, L. Manning, A. Japour, and E. Sun. Multiple dose safety, tolerability, and pharmacokinetics of LVR in combination with ritonavir. Proceedings of 5th Conference on Retroviruses and Opportunistic Infections, February 1998, Abstract Number 647 (1998).Google Scholar
  17. 17.
    G. Pantaleo, C. Grazaiosi, J. F. Damarest, L. Butini, M. Montroni, C. H. Fox, J. M. Orenstein, D. P. Kotler, and A. S. Fauci. HIV infection is active and progressive in lymphoid tissue during the clinically latent stage of disease. Nature 362:355-358 (1993).Google Scholar
  18. 18.
    J. K. Ladzins, J. Mestan, G. Goutte, M. R. Walker, G. Bold, H. G. Capraro, and T. Klimkait. In vitro effect of α1-acid glycoprotein on the anti-human immunodeficiency virus (HIV) activity of the protease inhibitor CGP 61755. A comparative study with other relevant HIV protease inhibitors. J. Infect. Dis. 175:1063-1070 (1997).Google Scholar
  19. 19.
    A. Molla, S. Vasavanonda, G. Kumar, H. L. Sham, M. Johnson, B. Grabowski, J. F. Denissen, W. Kohlbrenner, J. J. Plattner, J. M. Leonard, D. W. Norbeck, and D. J. Kempf. Human serum attenuates the activity of protease inhibitors toward wild-type and mutant human immunodeficiency virus. Virology 250:255-262 (1998).Google Scholar
  20. 20.
    M. E. Fitzsimmonsm and J. M. Collins. Selective biotransformation of the human immunodeficiency virus protease inhibitor saquinavir by human small-intestinal cytochrome P4503A4: potential contribution to high first-pass metabolism. Drug Metab. Dispos. 25:256-266 (1997).Google Scholar
  21. 21.
    M. Chiba, M. Hensleigh, and J. H. Lin. Hepatic and intestinal metabolism of indinavir, an HIV protease inhibitor, in rat and human microsomes: major role of CYP3A. Biochem. Pharmacol. 53:1187-1195 (1997).Google Scholar
  22. 22.
    D. J. Kempf, K. C. Marsh, G. Kumar, A. D. Rodrigues, J. F. Denissen, E. McDonald, M. J. Kukulka, A. Hsu, G. R. Granneman, P. A. Baroldi, E. Sun, D. Pizzuti, J. J. Plattner, D. W. Norbeck, and J. M. Leonard. Pharmacokinetic enhancement of inhibitors of the human immunodeficiency virus protease by coadministration with ritonavir. Antimicrob. Agent Chemother. 41:654-660 (1997).Google Scholar
  23. 23.
    A. Hsu, G. R. Granneman, G. Cao, L. Carrothers, and T. El Shourbagy. P. Baroldi P. K. Erdman, F. Brown, E. Sun, and J. M. Leonard. Pharmacokinetic interactions between two human immunodeficiency virus protease inhibitors. Clin. Pharmacol. Ther. 63:453-464 (1998).Google Scholar
  24. 24.
    A. Hsu, G. R. Granneman, G. Cao, L. Carrothers, A. Japour, T. El-Shourbagy, S. Dennis, J. Berg, K. Erdman, J. M. Leonard, and E. Sun. Pharmacokinetic interaction between ritonavir and indinavir in healthy volunteers. Antimicrob. Agents Chemother. 42:2784-2791 (1998).Google Scholar
  25. 25.
    C. Merry, M. G. Barry, F. Mulcahy, M. Ryan, J. Heavey, J. F. Tija, S. E. Gibbons, A. M. Breckenridge, and D. J. Back. Saquinavir pharmacokinetics alone or in combination with RVR in HIV-infected patients. AIDS 11:F29-F33 (1997).Google Scholar
  26. 26.
    J. F. Denissen, B. A. Grabowski, M. A. Johnson, A. M. Buko, D. J. Kempf, S. B. Thomas, and B. W. Surber. Metabolism and Disposition of the HIV-1 protease inhibitor ritonavir (ABT-538) in rats, dogs, and humans. Drug Metab. Dispos. 25:489-501 (1997).Google Scholar
  27. 27.
    H. L. Sham, D. A. Betebenner, T. Herrin, G. Kumar, A. Saldivar, S. Vasavanonda, A. Molla, D. J. Kempf, J. J. Plattner, and D. W. Norbeck. Synthesis and antiviral activities of the major metabolites of the HIV protease inhibitor ABT-378 (Lopinavir). Biorg. Med. Chem. Lett. 11:1351-1353 (2001).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2004

Authors and Affiliations

  • Gondi N. Kumar
    • 1
    • 2
  • Venkata K. Jayanti
    • 1
  • Marianne K. Johnson
    • 1
  • John Uchic
    • 1
  • Samuel Thomas
    • 1
  • Ronald D. Lee
    • 1
  • Brian A. Grabowski
    • 1
  • Hing L. Sham
    • 1
  • Dale J. Kempf
    • 1
  • Jon F. Denissen
    • 1
  • Kennan C. Marsh
    • 1
  • Eugene Sun
    • 1
  • Stanley A. Roberts
    • 1
  1. 1.Pharmaceutical Products DivisionAbbott LaboratoriesAbbott ParkUSA
  2. 2.Amgen Inc.Thousand OaksUSA

Personalised recommendations