Advertisement

Pharmaceutical Research

, Volume 21, Issue 9, pp 1531–1538 | Cite as

Peroxisome Proliferator-Activated Receptor (PPAR)-α: A Pharmacological Target with a Promising Future

  • Daniel H. van Raalte
  • Min Li
  • P. Haydn Pritchard
  • Kishor M. Wasan
Article

Abstract

Peroxisome proliferator-activated receptor (PPAR)-α is a ligand-activated transcriptional factor that belongs to the family of nuclear receptors. PPAR-α regulates the expression of genes involved in fatty acid β-oxidation and is a major regulator of energy homeostasis. Fibrates are PPAR-α agonists and have been used to treat dyslipidemia for several decades because of their triglyceride (TG) lowering and high- density lipoprotein cholesterol (HDL-C) elevating effects. More recent research has demonstrated anti-inflammatory and anti-thrombotic actions of PPAR-α agonists in the vessel wall as well. Thus, PPAR-α agonists decrease the progression of atherosclerosis by modulating metabolic risk factors and by their anti-inflammatory actions on the level of the vascular wall. This is confirmed by several clinical studies, in which fibrates have shown to reduce atherosclerotic plaque formation and the event rate of coronary heart disease (CHD), especially in patients suffering from metabolic syndrome (MS). MS is characterized by a group of metabolic risk factors that include obesity, raised blood pressure, dyslipidemia, insulin resistance or glucose intolerance, and a prothrombotic state, and its incidence in the Western world is rising to epidemic proportions. This review paper will focus on the functions of PPAR-α in fatty acid β-oxidation, lipid metabolism, and vascular inflammation. Furthermore, PPAR-α genetics, the clinical use of PPAR-α activators and their future perspective will be discussed.

atherosclerosis fatty acid oxidation fibrates inflammation lipoproteins metabolic syndrome peroxisome proliferator-activated receptor (PPAR)-α PPAR-α L162V polymorphism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Available at: www.americanheart.org. American Heart Association.Google Scholar
  2. 2.
    W. B. Kannel, W. P. Castelli, T. Gordon, and P. M. McNamara. Serum cholesterol, lipoproteins and the risk of coronary heart disease: The Framingham Study. Ann. Intern. Med. 74:1-12 (1971).Google Scholar
  3. 3.
    J. Shepherd, S. M. Cobbe, I. Ford, C. G. Isles, A. R. Lorimer, P. W. MacFarlane, J. H. McKillop, and C. J. Packard. Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. West of Scotland Coronary Prevention Study Group. N. Engl. J. Med. 333:1301-1307 (1995).Google Scholar
  4. 4.
    Scandinavian Simvastatin Survival Study Group. Randomized trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Survival Study (4S). Lancet 344:1383-1389 (1994).Google Scholar
  5. 5.
    V. Giguère. Orphan Nuclear Receptors: from gene to function. Endocr. Rev. 20:689-725 (1999).Google Scholar
  6. 6.
    R. L. Souhami. and J. Moxham. In: Textbook of Medicine, 3rd ed. Churchill Livingstone, London, 1997.Google Scholar
  7. 7.
    R. M. Evans. The steroid and thyroid hormone receptor super-family. Science 240:889-895 (1988).Google Scholar
  8. 8.
    V. Giguère, N. Yang, P. Segui, and R. M. Evans. Identification of a new class of steroid hormone receptors. Nature 331:91-94 (1988).Google Scholar
  9. 9.
    M. Robinson-Rechavi, A. S. Carpentier, M. Duffraisse, and V. Laudet. How many nuclear hormone receptors are there in the human genome? Trends Genet. 17:554-556 (2001).Google Scholar
  10. 10.
    J. M. Maglich, A. Sluder, X. Guan, Y. Shi, D. D. McKee, K. Carrick, K. Kamdar, T. M. Willson, and J. T. Moore. Comparison of complete nuclear receptor sets from the human, Caenorhabditis elegans and Drosophila genomes. Genome Biol. 2:0029 (2001).Google Scholar
  11. 11.
    I. Issemann and S. Green. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 347:645-650 (1990).Google Scholar
  12. 12.
    N. D. Lalwani, M. K. Reddy, S. A. Qureshi, C. R. Sirtori, Y. Abiko, and J. K. Reddy. Evaluation of selected hypolipidemic agents for the induction of peroxisomal enzymes and peroxisome proliferation in the rat liver. Hum. Toxicol. 2:27-48 (1983).Google Scholar
  13. 13.
    T. Sher, H. F. Yi, O. W. McBride, and F. J. Gonzalez. cDNA cloning, chromosomal mapping and functional characterization of the human peroxisome proliferator-activated receptor. Biochemistry 32:5598-5604 (1993).Google Scholar
  14. 14.
    M. E. Greene, B. Blumberg, O. W. McBride, H. F. Yi, K. Kronquist, K. Kwan, L. Hsieh, G. Greene, and S. D. Nimer. Isolation of the human peroxisome proliferator activator receptor gamma cDNA: expression in hematopoietic cells and chromosomal mapping. Gene Expr. 4:281-299 (1995).Google Scholar
  15. 15.
    A. Schmidt, N. Endo, S. J. Rutledge, R. Vogel, D. Shinar, and G. A. Rodan. Identification of a new member of the steroid hormone receptor superfamily that is activated by a peroxisome proliferator and fatty acid. Mol. Endocrinol. 6:1634-1641 (1992).Google Scholar
  16. 16.
    I. P. Torra, G. Chinetti, C. Duval, J. C. Fruchart, and B. Staels. Peroxisome proliferator-activated receptors: from transcriptional control to clinical practice. Curr. Opin. Lipidol. 12:245-254 (2001).Google Scholar
  17. 17.
    A. Ijpenberg, E. Jeannin, W. Wahli, and B. Desvergne. Polarity and specific sequence requirements of peroxisome proliferator-activated receptor (PPAR)/retinoid X receptor heterodimers binding to DNA. A functional analysis of the malic enzyme gene PPAR response element. J. Biol. Chem. 272:20108-20117 (1997).Google Scholar
  18. 18.
    S. A. Kliewer, K. Umesono, R. A. Heyman, D. J. Mangelsdorf, J. A. Dyck, and R. M. Evans. Convergence of 9-cis-retinoic acid and peroxisome proliferator signaling pathways through heterodimers formation of their receptors. Nature 358:771-774 (1992).Google Scholar
  19. 19.
    D. J. Mangelsdorf and R. M. Evans. The RXR heterodimers and orphan receptors. Cell 83:841-850 (1995).Google Scholar
  20. 20.
    C. E. Juge-Aubry, E. Hammar, C. Siegrist-Kaiser, A. Pernin, A. Takeshita, W. W. Chin, A. G. Burger, and C. A. Meier. Regulation of the transcriptional activity of the peroxisome proliferator-activated receptor a by phosphorylation of a ligand-independent trans-activating domain. J. Biol. Chem. 274:10505-10510 (1999).Google Scholar
  21. 21.
    A. Shalev, C. Siegrist-Kaiser, P. M. Yen, W. Wahli, A. G. Burger, W. W. Chin, and C. A. Meier. The peroxisome proliferator-activated receptor α is a phosphoprotein: regulation by insulin. Endocrinology 137:4499-4502 (1996).Google Scholar
  22. 22.
    O. Braissant, F. Foufelle, C. Scotto, M. Dauca, and W. Wahli. Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-α,-β, and-γ in the adult rat. Endocrinology 137:354-366 (1996).Google Scholar
  23. 23.
    D. Auboeuf, J. Rieusset, L. Fajas, P. Vallier, V. Frering, J. P. Riou, B. Staels, J. Auwerx, M. Laville, and H. Vidal. Tissue distribution and quantification of the expression of PPARs and LXR-α in humans: no alterations in adipose tissue of obese and NIDDM patients. Diabetes 46:1319-1327 (1997).Google Scholar
  24. 24.
    G. Chinetti, S. Griglio, M. Antonucci, I. P. Torra, P. Delerive, Z. Majd, J. C. Fruchart, J. Chapman, J. Najib, and B. Staels. Activation of proliferator-activated receptors alpha and gamma induces apoptosis of human monocyt-derived macrophages. J. Biol. Chem. 273:25573-25580 (1998).Google Scholar
  25. 25.
    B. Staels, W. Koenig, A. Habib, R. Merval, M. Lebret, I. P. Torra, P. Delerive, A. Fadel, G. Chinetti, J. C. Fruchart, J. Najib, J. Maclouf, and A. Tedgui. Activation of human aortic smooth muscle cells is inhibited by PPAR-alpha but not by PPAR-gamma activators. Nature 393:790-793 (1998).Google Scholar
  26. 26.
    I. Inoue, K. Shino, S. Noji, T. Awata, and S. Katayama. Expression of peroxisome proliferator-activated receptor alpha (PPAR-alpha) in primary cultures of human vascular endothelial cells. Biochem. Biophys. Res. Commun. 246:370-374 (1998).Google Scholar
  27. 27.
    M. Gottlicher, E. Widmark, Q. Li, and J. A. Gustafsson. Fatty acids activate chimera of the clofibric acid-activated receptor and the glucocorticoid receptor. Proc. Natl. Acad. Sci. USA 89:4653-4657 (1992).Google Scholar
  28. 28.
    K. Yu, W. Bayona, C. B. Kallen, H. P. Harding, C. P. Ravera, G. McMahon, M. Brown, and M. A. Lazar. Differential activation of peroxisome proliferator-activated receptors by eicosanoids. J. Biol. Chem. 270:23975-23983 (1995).Google Scholar
  29. 29.
    P. R. Devchand, H. Keller, J. M. Peters, M. Vazquez, F. J. Gonzalez, and W. Wahli. The PPARα-leukotriene B4 pathway to inflammatory control. Nature 384:39-43 (1996).Google Scholar
  30. 30.
    R. Hertz, I. Berman, D. Keppler, and J. Bar-Tana. Activation of gene transcription by prostacyclin-analogues is mediated by the peroxisome proliferator-activated receptor (PPAR). Eur. J. Biochem. 235:242-247 (1996).Google Scholar
  31. 31.
    J. M. Lehmann, J. M. Lenhard, B. B. Oliver, G. M. Ringold, and S. A. Kliewer. Peroxisome proliferator-activated receptors α and γ are activated by indomethacin and other non-steroidal anti-inflammatory drugs. J. Biol. Chem. 272:3406-3410 (1997).Google Scholar
  32. 32.
    F. J. Gonzalez, J. M. Peters, and R. C. Cattley. Mechanism of action of the nongenotoxic peroxisome proliferators: role of the peroxisome proliferator-activator receptor alpha. J. Natl. Cancer Inst. 90:1702-1709 (1998).Google Scholar
  33. 33.
    T. Lemberger, R. Saladin, M. Vazquez, F. Assimacopoulos, B. Staels, B. Desvergne, and W. Wahli. and J. Auwerx. Expression of the peroxisome proliferator-activated receptor alpha gene is stimulated by stress and follows a diurnal rhythm. J. Biol. Chem. 271:1764-1769 (1996).Google Scholar
  34. 34.
    K. Schoonjans, B. Staels, and J. Auwerx. Role of the peroxisome proliferator-activated receptor (PPAR) in mediating the effects of fibrates and fatty acids on gene expression. J. Lipid Res. 37:907-925 (1996).Google Scholar
  35. 35.
    C. Mascaro, E. Acosta, J. A. Ortiz, P. F. Marrero, F. G. Hegardt, and D. Haro. Control of human muscle-type carnitine palmito-yltransferase I gene transcription by peroxisome proliferator-activated receptor. J. Biol. Chem. 273:8560-8563 (1998).Google Scholar
  36. 36.
    S. S. Lee, T. Pineau, J. Drago, E. J. Lee, J. W. Owens, D. L. Kroetz, P. M. Fernandez-Salguero, H. Westphal, and F. J. Gonzalez. Targeted disruption of the α isoform of the peroxisome proliferator-activated receptor gene in mice results in abolishment of the pleiotropic effects of peroxisome proliferators. Mol. Cell. Biol. 15:3012-3022 (1995).Google Scholar
  37. 37.
    B. Staels, J. Dallongeville, J. Auwerx, K. Schoonjans, E. Leitersdorf, and J. C. Fruchart. Mechanism of action of fibrates on lipid and lipoprotein metabolism. Circulation 98:2088-2093 (1998).Google Scholar
  38. 38.
    F. Heller and C. Harvengt. Effects of clofibrate, bezafibrate, fenofibrate and probucol on plasma lipolytic enzymes in normo-lipidaemic subjects. Eur. J. Clin. Pharmacol. 25:57-63 (1983).Google Scholar
  39. 39.
    K. Schoonjans, J. Peinado-Onsurbe, A. M. Lefebvre, R. A. Heyman, M. Briggs, S. Deeb, B. Staels, and J. Auwerx. PPAR-α and PPAR-γ activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene. EMBO J. 15:5336-5348 (1996).Google Scholar
  40. 40.
    B. Staels, N. Vu-Dac, and V. A. Kosykh. R Saladin, J.C. Fruchart, J. Dallongeville, and J. Auwerx. Fibrates down-regulate apolipo-protein C-III expression independent of induction of peroxisomal acyl co-enzyme A oxidase. J. Clin. Invest. 65:705-712 (1995).Google Scholar
  41. 41.
    I. Lemieux, L. Laperriere, V. Dzavik, G. Tremblay, J. Bourgeois, and J. P. Despres. A 16-week fenofibrate treatment increases LDL particle size in type IIA dyslipidemic patients. Atherosclerosis 162:363-371 (2002).Google Scholar
  42. 42.
    H. Yoshida, T. Ishikawa, M. Ayaori, H. Shige, T. Ito, M. Suzukawa, and H. Nakamura. Beneficial effect of gemfibrozil on the chemical composition and oxidative susceptibility of low density lipoprotein: a randomized, double-blind, placebo-controlled study. Atherosclerosis 139:179-187 (1998).Google Scholar
  43. 43.
    C. J. Fielding and P. E. Fielding. Molecular Physiology of reverse cholesterol transport. J. Lipid Res. 36:211-228 (1995).Google Scholar
  44. 44.
    N. Vu-Dac, S. Chopin-Delannoy, P. Gervois, E. Bonnelye, G. Martin, J. C. Fruchart, V. Laudet, and B. Staels. The nuclear receptors peroxisome proliferator-activated receptor alpha and Rev-erbalpha mediate the species-specific regulation of apolipo-protein A-I expression by fibrates. J. Biol. Chem. 273:25713-25720 (1998).Google Scholar
  45. 45.
    N. Vu-Dac, K. Schoonjans, V. Kosykh, J. Dallongeville, J. C. Fruchart, and B. Staels. and J. Auwerx. Fibrates increase human apolipoprotein A-II expression through activation of the peroxisome proliferator-activated receptor. J. Clin. Invest. 96:741-750 (1995).Google Scholar
  46. 46.
    C. L. Bisgaier, A. D. Essenburg, B. C. Barnett, B. J. Auerbach, S. Haubenwallner, T. Leff, A. D. White, P. Creger, M. E. Pape, T. J. Rea, and R. S. Newton. A novel compound that elevates high density lipoprotein and activates the peroxisome proliferator activated receptor. J. Lipid Res. 39:17-30 (1998).Google Scholar
  47. 47.
    M. Bouly, D. Masson, and B. Gross. XC Jiang, C. Fievet, G. Castro, A.R. Tall, J.C. Fruchart, B. Staels, L. Lagrost, and G. Luc. Induction of the phospholipid transfer protein gene accounts for the high density lipoprotein enlargements in mice treated with fenofibrate. J. Biol. Chem. 276:25841-25847 (2001).Google Scholar
  48. 48.
    G. Chinetti, S. Lestavel, V. Bocher, A. T. Remaley, B. Neve, I. P. Torra, E. Teissier, A. Minnich, M. Jaye, N. Duverger, H. B. Brewer, J. C. Fruchart, V. Clavey, and B. Staels. PPAR-α and PPAR-γ activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway. Nat. Med. 7:53-58 (2001).Google Scholar
  49. 49.
    K. A. Tobin, H. H. Steineger, S. Alberti, O. Spydevold, J. Auwerx, J. A. Gustafsson, and H. I. Nebb. Cross-talk between fatty acid and cholesterol metabolism mediated by liver X receptor-alpha. Mol. Endocrinol. 14:741-752 (2000).Google Scholar
  50. 50.
    J. Y. Chiang, R. Kimmel, and D. Stroup. Regulation of cholesterol 7 alpha-hydroxylase gene (CYP7A1) transcription by the liver orphan nuclear receptor (LXRalpha). Gene 262:257-265 (2001).Google Scholar
  51. 51.
    S. K. Cheema and L. B. Agellon. The murine and human cholesterol 7alpha-hydroxylase gene promoters are differentially responsive to regulation by fatty acids mediated via peroxisome proliferator-activated receptor alpha. J. Biol. Chem. 275:12530-12536 (2000).Google Scholar
  52. 52.
    S. M. Post. H Duez, P.P. Gervois, B. Staels, F. Kuipers, and H.M. Princen. Fibrates suppress bile acid synthesis via peroxisome proliferator-activator receptor-alpha-mediated downregulation of cholesterol 7alpha-hydroxylase and sterol-27-hydroxylase expression. Arterioscler. Thromb. Vasc. Biol. 21:1840-1845 (2001).Google Scholar
  53. 53.
    D. Stahlberg, E. Reihner, M. Rudling, L. Berglund, K. Einarsson, and B. Angelin. Influence of bezafibrate on hepatic cholesterol metabolism in gallstone patients: reduced activity of cholesterol 7 alpha-hydroxylase. Hepatology 21:1025-1030 (1995).Google Scholar
  54. 54.
    R. Ross. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 362:801-809 (1993).Google Scholar
  55. 55.
    K. Saitoh and T. Mori. H Kasai, T. Nagayama, A. Tsuchiya, and S. Ohbayashi. Anti-atheromatous effects of fenofibrate, a hypolipidemic drug. I: Anti-atheromatous effects are independent of its hypolipidemic effect in cholesterol-fed rabbits. Folia Pharmacol. Japon. 106:41-50 (1995).Google Scholar
  56. 56.
    C. G. Ericsson, A. Hamsten, J. Nilsson, L. Grip, B. Svane, and U. de Faire. Angiographic assessment of effects of bezafibrate on progression of coronary artery disease in young male postinfarction patients. Lancet 347:849-853 (1996).Google Scholar
  57. 57.
    N. Marx and G. K. Sukhova. T Collins, P. Libby, and J. Plutzky. PPAR-α activators inhibit cytokine-induced vascular cell adhesion molecule-1 expression in human endothelial cells. Circulation 99:3125-3131 (1999).Google Scholar
  58. 58.
    P. Delerive, F. Martin-Nizard, G. Chinetti, F. Trottein, J. C. Fruchart, J. Najib, P. Duriez, and B. Staels. Peroxisome proliferator-activated receptors inhibit thrombin-induced endothelin-1 production in human vascular endothelial cells by inhibiting the activator protein-1 signaling pathway. Circ. Res. 85:394-402 (1999).Google Scholar
  59. 59.
    N. Marx, N. Mackman, U. Schonbeck, N. Yilmaz, V. V. Hombach, P. Libby, and J. Plutzky. PPARα activators inhibit tissue factor expression and activity in human monocytes. Circulation 103:213-219 (2001).Google Scholar
  60. 60.
    B. P. Neve, D. Corseaux, G. Chinetti, C. Zawadzki, J. C. Fruchart, P. Duriez, B. Staels, and B. Jude. PPARα agonists inhibit tissue factor expression in human monocytes and macrophages. Circulation 103:207-212 (2001).Google Scholar
  61. 61.
    I. J. Jonkers, M. F. Mohrschladt, R. G. Westendorp, A. van der Laarse, and A. H. Smelt. Severe hypertriglyceridemia with insulin resistance is associated with systemic inflammation: reversal with bezafibrate in a randomized controlled trial. Am. J. Med. 112:275-280 (2002).Google Scholar
  62. 62.
    Group of Physicians of the Newcastle upon Tyne Region. Trial of clofibrate in the treatment of ischaemic heart disease. BMJ 4: 767-775 (1971).Google Scholar
  63. 63.
    Research Committee of the Scottish Society of Physicians. Ischaemic heart disease: a secondary prevention trial using clofibrate. BMJ 4:775-784 (1971).Google Scholar
  64. 64.
    Committee of Principal Investigators. A co-operative trial in the primary prevention of ischaemic heart disease using clofibrate. Br. Heart J. 40:1069-1118 (1978).Google Scholar
  65. 65.
    Coronary Drug Project Research Group. Clofibrate and Niacin in coronary heart disease. JAMA 231:360-381 (1975).Google Scholar
  66. 66.
    L. A. Carlson and G. Rosenhamer. Reduction in mortality in the Stockholm Ischaemic Heart Disease Secondary Prevention Study by combined treatment with clofibrate and nicotinic acid. Acta Med. Scand. 223:405-418 (1988).Google Scholar
  67. 67.
    M. Syvanne, M. S. Nieminen, M. H. Frick, H. Kauma, S. Majahalme, V. Virtanen, Y. A. Kesaniemi, A. Pasternack, C. Ehnholm, and M. R. Taskinen. Associations between lipoproteins and the progression of coronary and vein-graft atherosclerosis in a controlled trial with gemfibrozil in men with low baseline levels of HDL cholesterol. Circulation 98:1993-1999 (1998).Google Scholar
  68. 68.
    Diabetes Atherosclerosis Intervention Study Investigators. Effect of fenofibrate on progression of coronary-artery disease in type 2 diabetes: the Diabetes Atherosclerosis Intervention Study, a randomized study. Lancet 357:905-910 (2001).Google Scholar
  69. 69.
    M. H. Frick and O. Elo. K, Haapa, O.P. Heinonen, P. Heinsalmi, P. Helo, J.K. Huttunen, P. Kaitaniemi, P. Koskinen, and V Manninen. Helsinki Heart Study: Primary-prevention trial with gem-fibrozil in middle-aged men with dyslipidemia. N. Engl. J. Med. 317:1237-1245 (1987).Google Scholar
  70. 70.
    V. Manninen, M. O. Elo, M. H. Frick, K. Haapa, O. P. Heinonen, P. Heinsalmi, P. Helo, J. K. Huttunen, P. Kaitaniemi, and P. Koskinen. Lipid alterations and decline in the incidence of coronary heart disease in the Helsinki Heart Study. JAMA 260:641-651 (1988).Google Scholar
  71. 71.
    L. Tenkanen, M. Manttari, and V. Manninen. Some coronary risk factors related to the insulin resistance syndrome and treatment with gemfibrozil. Experience from the Helsinki Heart Study. Circulation 92:1779-1785 (1995).Google Scholar
  72. 72.
    H. B. Rubins, S. J. Robins, D. Collins, C. L. Fye, J. W. Anderson, M. B. Elam, F. H. Faas, E. Linares, E. J. Schaefer, G. Schectman, and T. J. Wilt. and J. Wittes. Gemfibrozil for the secondary prevention of coronary heart disease in men with low levels of high-density cholesterol. N. Engl. J. Med. 341:410-418 (1999).Google Scholar
  73. 73.
    The BIP Study Group. Secondary prevention by raising HDL-cholesterol and reducing triglycerides in patients with coronary artery disease: The Bezafibrate Infarction Prevention (BIP) Study. Circulation 102:21-27 (2000).Google Scholar
  74. 74.
    S. M. Grundy, H. B. Brewer Jr., J. I. Cleeman, and S. C. Smith Jr. and C Lenfant, National Heart, Lung, and Blood Institute; American Heart Association. Definition of metabolic Syndrome: report of the National Heart, Lung, and Blood Institute/ American Heart Association conference on scientific issues related to definition. Arterioscler. Thromb. Vasc. Biol. 24:e13-e18 (2004).Google Scholar
  75. 75.
    E. S. Ford, W. H. Giles, and W. H. Dietz. Prevalence of the metabolic syndrome among US adults: findings from the Third National Health and Nutrition Examination Survey. JAMA 287:356-359 (2002).Google Scholar
  76. 76.
    A. Gaw, C. J. Packard, M. J. Caslake, B. A. Griffin, G. M. Lindsay, J. Thomson, B. D. Vallance, and D. Wosornu. and J. Shepherd. Effects of ciprofibrate on LDL metabolism in man. Atherosclerosis 108:137-148 (1994).Google Scholar
  77. 77.
    N. E. Capps. Lipid profiles on fibric-acid derivates. Lancet 344: 684-685 (1994).Google Scholar
  78. 78.
    P. O. Collinson, C. J. Hjelm, and R. Canepo-Anson. Paradoxical high-density lipoprotein reduction induced by fenofibrate and ciprofibrate. Ann. Clin. Biochem. 33:159-161 (1996).Google Scholar
  79. 79.
    C. Lacquement, F. Lepretre, I. Pineda Torra, M. Manraj, G. Charpentier, J. Ruiz, B. Staels, and P. Froguel. Mutation screening of the PPARalpha gene in type 2 diabetes associated with coronary heart disease. Diabetes Metab. 26:393-401 (2000).Google Scholar
  80. 80.
    A. Sapone, J. M. Peters, S. Sakai, S. Tomita, S. S. Papiha, R. Dai, F. K. Friedman, and F. J. Gonzalez. The human peroxisome proliferator-activated receptor α gene: identification and functional characterization of two natural allelic variants. Pharmacogenetics 10:321-333 (2000).Google Scholar
  81. 81.
    D. M. Favell, I. Pineda Torra, Y. Jamshidi, D. Evans, J. R. Diamond, R. S. Elkeles, S. R. Bujac, G. Miller, P. J. Talmud, B. Staels, and S. E. Humphries. Variation if the PPARα gene is associated with altered function in vitro and plasma lipid concentrations in type II diabetes subjects. Diabetologia 43:673-680 (2000).Google Scholar
  82. 82.
    M. C. Vohl, P. Lepage, D. Gaudet, C. G. Brewer, C. Betard, P. Perron, G. Houde, C. Cellier, J. M. Faith, J. P. Despres, K. Morgan, and T. J. Hudson. Molecular scanning of the human PPARα gene: association of the L162V mutation with hyperapobetalipo-proteinemia. J. Lipid Res. 41:945-952 (2000).Google Scholar
  83. 83.
    Y. Jamshidi, D. M. Flavell, E. Hawe, P. K. MacCallum, T. W. Meade, and S. E. Humphries. Genetic determents of the response to bezafibrate treatment in the lower extremity arterial diseaseevent reduction (LEADER) trial. Atherosclerosis 163:183-192 (2002).Google Scholar
  84. 84.
    L. H. Puckey and B. L. Knight. Variation at position 162 of peroxisome proliferator-activated receptor α does not influence the effect of fibrates on cholesterol or triacylglycerol concentrations in hyperlipidaemic subjects. Pharmacogenetics 11:619-624 (2001).Google Scholar
  85. 85.
    D. M. Flavell. Y Jamshidi, E. Hawe, I. Pineda Torra, M.R. Taskinen, M.H. Frick, M.S. Nieminen, Y.A. Kesaniemi, A. Pasternack, B. Staels, G. Miller, S.E. Humphries, P.J. Talmud, and M. Sylvanne. Peroxisome proliferator-activated receptor α gene variants influence progression of coronary atherosclerosis and risk of coronary artery disease. Circulation 105:1440-1445 (2002).Google Scholar
  86. 86.
    D. Brisson, K. Ledoux, Y. Bosse, J. St-Pierre, P. Julien, P. Perron, T. J. Hudson, M. C. Vohl, and D. Gaudet. Effect of apolipoprotein E, peroxisome proliferator-activated receptor alpha, lipoprotein lipase gene mutations on the ability of fenofibrate to improve lipid profiles and reach clinical guideline targets among hypertriglyceridemic patients. Pharmacogenetics 12:313-320 (2002).Google Scholar
  87. 87.
    Y. Bossé, A. Pascot, M. Dumont, M. Brochu, D. Prud'homme, J. Bergeron, J. P. Despres, and M. C. Vohl. Influences of the PPARα-L162V polymorphism on plasma HDL2-cholesterol response of abdominally obese man treated with gemfibrozil. Genet. Med. 4:311-315 (2002).Google Scholar
  88. 88.
    E. S. Tai, S. Demissie, L. A. Cupples, D. Corella, P. W. Wilson, E. J. Schaefer, and J. M. Ordovas. Association between the PPARα L162V polymorphism and plasma lipid levels. The Framingham Offspring Study. Arterioscler. Thromb. Vasc. Biol. 22:805-810 (2002).Google Scholar
  89. 89.
    D. Evans, J. Aberle, D. Wendt, A. Wolf, U. Beisiegel, and W. A. Mann. A polymorphism, L162V, in the peroxisome proliferator-activated receptor alpha (PPARalpha) gene is associated with lower body mass index in patients with non-insulin-dependent diabetes mellitus. J. Mol. Med. 79:198-204 (2001).Google Scholar
  90. 90.
    M. E. Brousseau, E. S. Tai, D. Collins, J. J. O'Connor Jr., J. M. Cordovas, H. B. Rubins, S. J. Robins, and E. J. Schaefer. A common variant in the peroxisome proliferator-activated receptor alpha gene is associated with decreased risk for new coronary events in diabetic and insulin resistant subjects in VA-HIT. Data presented at the American Heart Association (AHA) meeting in Orlando, Florida, November 2003.Google Scholar
  91. 91.
    D. Ohsawa, Y. Uchida, Y. Fujimori, J. Hirose, H. Noike, K. Tokuhiro, E. Kawamura, M. Kanai, H. Sakuragawa, and A. Hitsumoto. Angioscopic evaluation of stabilizing effects of an anti-lipemic agent, bezafibrate, on coronary plaques in patients with coronary artery disease: a multicenter prospective. Jpn. Heart J. 43:319-331 (2002).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2004

Authors and Affiliations

  • Daniel H. van Raalte
    • 1
  • Min Li
    • 2
  • P. Haydn Pritchard
    • 2
  • Kishor M. Wasan
    • 1
  1. 1.Division of Pharmaceutics and Biopharmaceutics, Faculty of Pharmaceutical SciencesUniversity of British ColumbiaVancouverCanada
  2. 2.Department of Pathology and Laboratory Medicine, Faculty of MedicineUniversity of British ColumbiaVancouverCanada

Personalised recommendations