Advertisement

Pharmaceutical Research

, Volume 21, Issue 8, pp 1362–1373 | Cite as

Effects of the Chemical Structure and the Surface Properties of Polymeric Biomaterials on Their Biocompatibility

  • You-Xiong Wang
  • John L. Robertson
  • William B. SpillmanJr.
  • Richard O. Claus
Article

Abstract

Polymeric biomaterials have extensively been used in medicinal applications. However, factors that determine their biocompatibility are still not very clear. This article reviews various effects of the chemical structure and the surface properties of polymeric biomaterials on their biocompatibility, including protein adsorption, cell adhesion, cytotoxicity, blood compatibility, and tissue compatibility. Understanding these aspects of biocompatibility is important to the improvement of the biocompatibility of existing polymers and the design of new biocompatible polymers.

biocompatibility biomaterial blood compatibility cell adhesion cytotoxicity polymer protein adsorption surface property tissue compatibility 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    J. B. Park. Biomaterials. In J.D. Bronzino (ed.), Biomedical Engineering Handbook,CRC Press and IEEE Press, 1995, pp. 530–610.Google Scholar
  2. 2.
    S. H. Teoh, Z. H. Tang, and G. W. Hastings. Thermoplastic polymers in biomedical applications: structure, properties and processing. In J. Black and G. Hastings (eds.), Handbook of Biomaterial Properties, Chapman & Hall, London, 1998, pp. 270–301.Google Scholar
  3. 3.
    J. Jagur-Grodzinski. Biomedical application of functional polymers. Reactive & Fuctional Polymers 39:99–138 (1999).Google Scholar
  4. 4.
    D. F. Williams. Biocompatibility of Clinical Implant Materials, Vol. II, CRC Press, Boca Raton, FL, 1981.Google Scholar
  5. 5.
    H. Park and K. Park. Pharm. Res. { vn13}:1770–1776 (1996).Google Scholar
  6. 6.
    C. J. Kirkpatrick, F. Bittinger, M. Wagner, H. Kohler, T. G. van Kooten, C. L. Klein, and M. Otto. Current trends in biocompatibility testing. J. Eng. Med. { vn212}:75–84 (1998).Google Scholar
  7. 7.
    D. Sgouras and R. Duncan. Methods for the evaluation of biocompatibility of soluble synthetic polymers which have potential for biomedical use: 1-use of the tetrazolium-based colorimetric assay (MTT) as a preliminary screen for evaluation of in vitro cytotoxicity. J. Mater. Sci: Mater. Med. 1:61–68 (1990).Google Scholar
  8. 8.
    J. Vienken, M. Diamantoglou, C. Hahn, H. Kamusewitz, and D. Paul. Considerations on developmental aspects of biocompatible dialysis membranes. Artif. Organs { vn19}:398–406 (1995).Google Scholar
  9. 9.
    E. Ruckenstein and S. V. Gourisankar. Preparation and characterization of thin film surface coatings for biological environments. Biomaterials 7:403–422 (1986).Google Scholar
  10. 10.
    J. D. Andrade. Interfacial phenomena and biomaterials. Med. Instrum. { vn7}:110–120 (1973).Google Scholar
  11. 11.
    D. H. Kaelble and K. C. Uy. A reinterpretation of organic liquid-polytetrafluoroethylene surface interaction. J. Adhesion { vn2}: 50–60 (1970).Google Scholar
  12. 12.
    D. R. Lu and K. Park. Protein adsorption on polymer surfaces: calculation of adsorption energies. J. Biomater. Sci. Polym. Ed. { vn1}:243–260 (1990).Google Scholar
  13. 13.
    J. M. Schakenraad, H. I. Busscher, C. R. H. Wildevuur, and J. Arends. The influence of substratum surface free energy on spreading of various cell-types on polymers. Adv. Biomater. { vn6}: 263–268 (1986).Google Scholar
  14. 14.
    J. M. Schakenraad. J. Arends, H. I. Busscher, F. Dijk, P. B. Wachem, and C. R. H. Wildevuur. Kinetics of cell spreading on protein precoated substrata: a study of interfacial aspects. Biomaterials { vn10}:43–50 (1989).Google Scholar
  15. 15.
    J. Jagur-Grodzinski. Heterogeneous Modification of Polymers, Wiley, Chichester, 1997.Google Scholar
  16. 16.
    B. D. Ratner and D. G. Castner. Surface Modification of Polymeric Biomaterials,New York, Plenum Press, 1997.Google Scholar
  17. 17.
    K. Esumi, A. M. Schwartz, and A. C. Zettlemoyer. Effects of ultra-violet radiation on polymer surfaces. J. Coll. Interface Sci. { vn95}:102–107 (1983).Google Scholar
  18. 18.
    A. A. Benderley. Treatment of Teflon to promote bondability. J. Appl. Polymer. Sci. { vn6}:221–225 (1962).Google Scholar
  19. 19.
    A. S. Hoffman. J Appl Polym Sci. Appl Polym Symp { vn4vn2}:251–259 (1988).Google Scholar
  20. 20.
    G. H. Hsiue, S. D. Lee, C. C. Wang, H. M. I. Shiue, and P. C. T. Chang. Plasma-induced graft copolymerization of HEMA onto silicon rubber and TPX film improving rabbit corneal epithelial cell attachment and growth. Biomaterials { vn15}:163–171 (1994).Google Scholar
  21. 21.
    B. D. Ratner, A. S. Hoffman, S. R. Hanson, L. A. Harker, and J. D. Whiffen. J Polym Sci Polym Symp { vn66}:363–372 (1979).Google Scholar
  22. 22.
    A. A. A. de Queiroz, E. R. Barrak, and S. C. de Castro. Thermodynamic analysis of the surface of biomaterials. J. Mol. Struct. { vn394}:271–279 (1997).Google Scholar
  23. 23.
    D. A. Puleo and A. Nanci. Understanding and controlling the bone-implant interface. Biomaterials { vn20}:2311–2321 (1999).Google Scholar
  24. 24.
    R. E. Baier and A. E. Meyer. Implant surface preparation. Int. J. Oral Maxillofac. Implants { vn3}:9–20 (1988).Google Scholar
  25. 25.
    J. D. Andrade. Principles of protein adsorption. In J.D. Andrade (ed.), Surface and Interfacial Aspects of Biomedical Polymer, New York, Plenum, 1985, pp1–80.Google Scholar
  26. 26.
    J. L. Brash and T. A. Horbett. In J.L. Brash and T.A. Horbett (eds.), Proteins at Interface Physicochemical and Biochemical Studies, Vol. 343, Washington, DC, ACS Symposium Series, 1987, pp. 1–33.Google Scholar
  27. 27.
    D. L. Elbert and J. A Hubbell, Surface treatments of polymers for biocompatibility. Annu Rev Mater Sci { vn26}:365–394 (1996).Google Scholar
  28. 28.
    T. Akaike, T. Okano, M. Terano, and N. Yui. Advances in Polymeric Biomaterials Sciences, Tokyo, CMC Co. Ltd, 1997.Google Scholar
  29. 29.
    A. Higuchi, K. Shirano, M. Harashima, B. O. Yoon, M. Hara, M. Hattori, and K. Imamura. Chemically modified polysulfone hollow fibers with vinylpyrrolidone having improved blood compatibility. Biomaterials { vn23}:2659–2666 (2002).Google Scholar
  30. 30.
    P. D. Nair, M. Jayabalan, and V. N. Krishnamurthy. Polyurethane-polyacrylamide IPNs. I. Synthesis and characterization. J. Polym. Sci. Part A: Polym. Chem. { vn28}:3775–3786 (1990).Google Scholar
  31. 31.
    D. S. Jones, M. C. Bonner, S. P. Gorman, M. Akay, and P. F. Keane. Sequential polyurethane-poly(methylmethacrylate) interpenetrating polymer networks as ureteral biomaterials: mechanical properties and comparative resistance to urinary encrustation. J. Mater. Sci. Mater. Med. { vn8}:713–717 (1997).Google Scholar
  32. 32.
    G. A. Abraham, A. A. A. de Queiroz, and J. S. Roman. Hydrophilic hybrid IPNs of segmented polyurethanes and copolymers of vinylpyrrolidone for applications in medicine. Biomaterials { vn22}:1971–1985 (2001).Google Scholar
  33. 33.
    T. A. Horbett and J. L. Brash. Proteins at Interfaces. II. Fundamental and Application, Vol. 602, Washington, DC, ACS Symposium Series, 1995.Google Scholar
  34. 34.
    E. K. Yeh, J. Newman, and C. J. Radke. Equilibrium configurations of liquid droplets on solid surfaces under the influence of thin-film forces, Part 1. Thermodynamics. Colloids and Surfaces A: Physicochemical and Engineering Aspect { vn156}:137–144 (1999).Google Scholar
  35. 35.
    C. J. Beverung, C. J. Radke, and H. W. Blanch. Adsorption dynamics of L-glutamic acid copolymers at a heptane/water surface. Biophys. Chem. { vn7}0:121–132 (1998).Google Scholar
  36. 36.
    D. T. Kim, H. W. Blanch, and C. J. Radke. Direct imaging of lysozyme adsorption onto mica by atomic force microscope. Langmuir { vn18}:5841–5850 (2002).Google Scholar
  37. 37.
    M. Tanaka, T. Motomura, M. Kawada, T. Anzai, Y. Kasori, T. Shiroya, K. Shimura, M. Onishi, and A. Mochizuki. Blood compatible aspects of poly(2-methoxyethylacrylate) (PMEA)-Relationship between protein adsorption and platelet adhesion on PMEA surface. Biomaterials { vn21}:1471–1481 (2000).Google Scholar
  38. 38.
    D. R. Absolom, W. Zingg, Z. Policova, and A. W. Newmann. Determination of surface tension of protein-coated materials by means of the advancing solidification front technique. Trans. Am. Soc. Artif. Org. { vn29}:146–151 (1983).Google Scholar
  39. 39.
    S. Meumer, H. F. G. Heijnen, M. J. W. Ijsseldijk, E. Orlando, P. G. de Groot, and J. J. Sixma. Pletelet adhesion to fibronectin in flow: the importance of von Willebrand factor and glycoprotein Ib. Blood 86:3452–3460 (1995).Google Scholar
  40. 40.
    S. Nagaoka and R. Akashi. Low friction hydrophilic surface for medical devices. J. Bioact. Compat. Polymers { vn5}:212–246 (1990).Google Scholar
  41. 41.
    J. H. Lee and H. B. Lee. Platelet adhesion onto wettability gradient surfaces in the absence and presence of plasma proteins. J. Biomed. Mater. Res. { vn41}:304–311 (1998).Google Scholar
  42. 42.
    H. J. Lee, J. Kopecek, and J. D. Andrade. Protein resistant surface prepared by PEO containing block copolymer surfactant. J. Biomed. Mater. Res. { vn23}:351–368 (1989).Google Scholar
  43. 43.
    T. Matsuda and S. Ito. Surface coating of hydrophilichydrophobic block co-polymers on a poly(acrylonitrile) haemodialyser reduce platelet adhesion and its transmembrane stimulation. Biomaterials { vn15}:417–422 (1994).Google Scholar
  44. 44.
    B. Seijo, E. Fattal, L. R. Treupel, and P. Couvreur. Design of nanoparticles of less than 50 nm diameter: preparation, characterization and loading. Int. J. Pharm. { vn62}:1–7 (1990).Google Scholar
  45. 45.
    E. Hamad and S. Qutubuddin. Theory of micelle formation by amphiphililic side-chain polymers. Macromolecules { vn23}:4185–4191 (1990).Google Scholar
  46. 46.
    M. Malmsten and B. Lindman. Self-assembly in aqueous block copolymer solutions. Macromolecules { vn25}:5440–5445 (1992).Google Scholar
  47. 47.
    Z. Gao and A. Eisenberg. A model of micellization for block copolymers in solutions. Macromolecules { vn26}:7353–7360 (1993).Google Scholar
  48. 48.
    S. Y. Kim, Y. M. Lee, D. J. Baik, and J. S. Kang. Toxic characteristics of methoxy poly(ethyl glycol)/poly(_-caprolactone) nanosphere; in vitro and in vivo studies in the normal mice. Biomaterials { vn24}:55–63 (2003).Google Scholar
  49. 49.
    R.W.J. Bowers, S.A. Jones, P.W. Stratford, S.A. Charles, Polymeric surface coatings, US Patent 5,648,442 (1994).Google Scholar
  50. 50.
    E. J. Campbell, V. O'Byrne, P. W. Stratford. Biocompatible surface using methacryloylphosphorylcholine laurylmethacrylate copolymers. ASAIO J. { vn4}0:853–857 (1994).Google Scholar
  51. 51.
    A. L. Lewis, P. D. Hughes, L. C. Kirkwood, S. W. Leppard, R. P. Redman, L. A. Tolhurst, and P. W. Stratford. Synthesis and characterization of phoshorylchloline-based polymers useful for coating blood filtration devices. Biomaterials { vn21}:1847–1859 (2000).Google Scholar
  52. 52.
    T. Okano, T. Aoyagi, K. Kataoka, K. Abe, Y. Sakurai, M. Shimada, and I. Shinohara. Hydrophilic-hydrophobic microdomin surfaces having an ability to suppress platelet aggregation and this in vitro antithrombogenicity. J. Biomed. Mater. Res. { vn20}:919–927 (1986).Google Scholar
  53. 53.
    S. Nagaoka and H. Takiuchi. K Yokota, Y. Mori, H. Tanzawa, T. Kikuchi, Interactions between blood components and hydrogels with poly(oxyethylene) chain of various chain length. Kobunshi Ronbunshu { vn39}:165–171 (1992).Google Scholar
  54. 54.
    C. D. Tidwell, S. L. Ertel, and B. D. Ratner. Endothelial cell growth and protein adsorption on terminally functionalized, self-assembled monolayers of alkanethiolates on gold. Langmuir { vn13}:3404–3413 (1997).Google Scholar
  55. 55.
    M. Tanahashi and T. Matsuda. Surface functional-group dependsence on apatite formation on self-assembled monolayers in a simulated body fluid. J. Biomed. Mater. Res. { vn34}:305–315 (1997).Google Scholar
  56. 56.
    O. Noiset, C. Henneuse, Y.-J. Schneider, and J. Marchand-Brynaert. Surface reactions of poly(aryl ether ether ketone) film: UV spectrophotometric, radiochemical, and X-ray photoelectron spectroscopic assays of hydroxyl functions. Macromolecules { vn30}:540–548 (1997).Google Scholar
  57. 57.
    T. G. Grasel and S. L. Cooper. Properties and biological interactions of polyurethane anionomers: Effect of sulfonate incorporation. J. Biomed. Mater. Res. { vn23}:311–338 (1989).Google Scholar
  58. 58.
    Y. H. Kim, D. K. Han, S. Y. Jeong, and K.-D. Ahn. Macromol. Chem. Macromol. Symp. { vn33}:319–326 (1990).Google Scholar
  59. 59.
    D. K. Han, S. Y. Jeong, Y. H. Kim, B. G. Min, and H. I. Cho. Negative cilia concept for thromboresistance: Synergistic effect of PEO and sulfonate groups grafted onto polyurethanes. J. Biomed. Mater. Res. { vn25}:561–575 (1991).Google Scholar
  60. 60.
    D. E. Chenoweth. In: E.F. Leonard, V.T. Turitto, and L. Vroman. Blood in Contacts with Natural and Artificial Surfaces, New York Academy of Science, New York, 1987, pp 307–313.Google Scholar
  61. 61.
    K. Smetana Jr. J. Vacik, M. Houska, D. Souckova, J. Lukas, Macrophage recognition of polymers: effect of carboxylate groups, J. Mater. Sci. Mater. Med. { vn4}:526–529 (1993).Google Scholar
  62. 62.
    K. Y. Lee, W. S. Ha, and W. H. Park. Blood compatibility and biodegradable of partially N-acylated chitosan derivatives. Biomaterials { vn16}:1211–1216 (1995).Google Scholar
  63. 63.
    J. S. Lee, M. Kaibara, and H. Sasabe. In vitro rheological evaluation of antithrombogenicity or anticoagulability of styrene derivatives polymer. Biomaterials { vn13}:1025–1030 (1992).Google Scholar
  64. 64.
    J. A. Hayward and D. Chapman. Biomembrane surface as model for polymer design: the potential for haemocompatibility. Biomaterials { vn5}:135–141 (1985).Google Scholar
  65. 65.
    D. Chapman. Biocompatible surface based upon the phospholipid asymmetry of biomembranes. Biochem. Soc. Trans. { vn21}:259–263 (1993).Google Scholar
  66. 66.
    D. Chapman. Biomembranes and new hemocompatible materials. Langmuir { vn9}:39–45 (1993).Google Scholar
  67. 67.
    K. Ishihara, R. Aragaki, T. Ueda, A. Watenabe, and N. Nakabayashi. Reduced thromobogenicity of polymers having phospholipid polar groups. J. Biomed. Mater. Res. { vn24}:1069–1077 (1990).Google Scholar
  68. 68.
    M. Kojima, K. Ishihara, A. Watanabe, and N. Nakabayashi. Interaction between phospholipid and biocompatible polymers containing a phosphorylchloline moiety. Biomaterials { vn12}:121–124 (1991).Google Scholar
  69. 69.
    K. Ishihara, H. Oshida, Y. Endo, T. Ueda, A. Watanabe, and N. Nakabayashi. Hemocompatibility of human whole blood on polymers having phospholipid polar group and its mechanism. J. Biomed. Mater. Res. { vn26}:1543–1552 (1992).Google Scholar
  70. 70.
    S. F. Zhang, P. Rolfe, G. Wright, W. Lian, A. J. Milling, S. Tanaka, K. Ishihara. Physical and biological properties of compound membranes incorporating a copolymer with a phosphorylchloline head group. Biomaterials { vn19}:691–700 (1998).Google Scholar
  71. 71.
    N. Morimoto, Y. Iwasaki, N. Nakabayashi, and K. Ishihara. Physical properties and blood compatibility of surface-modified segmented polyurethane by semi-interpenetrating polymer networks with a phospholipid polymer. Biomaterials { vn23}:4881–4887 (2002).Google Scholar
  72. 72.
    L. Ruiz, D. S. Johnston, S. A. Makobliso, P. Aebischer, and H. J. Mathieu. Biomimetic coatings on silicon wafers: synthesis and characterization. In Mathieu (ed.), Ecasia '95 Proceedings, Chichester, 1996, pp 18–61.Google Scholar
  73. 73.
    L. Ruiz, J. G. Hilborn, D. Leonard, and H. J. Mathieu. Synthesis, structure and surface dynamics of phosphorylcholine functional biomimicking polymers. Biomaterials { vn19}:987–998 (1998).Google Scholar
  74. 74.
    K. Ishihara, H. Hanyuda, and N. Nakabayashi. Synthesis of phospholipid polymers having a urethane bond in the side chain as coating material on segmented polyurethane and their platelet adhesion-resistant properties. Biomaterials { vn16}:873–879 (1995).Google Scholar
  75. 75.
    K. Sugiyama, M. Fukuchi, A. Kishida, M. Akashi, and Y. Kadima. Preparation and characterization of poly(2-methacryloxyethyl phosphorylcholine-co-methyl methacrylete) graft copolyetherurethanes. Kobunshi Ronbunshu { vn53}:48–56 (1996).Google Scholar
  76. 76.
    K. Ishihara, S. Tanaka, N. Furukawa, K. Kurita, and N. Nakabayashi. Improved blood compatibility of segmented polyurethanes by polymeric additives having phospholipid polar group. I. Molecular design of polymeric additives and their functions. J. Biomed. Mater. { vn32}:391–399 (1996).Google Scholar
  77. 77.
    K. Ishihara, N. Shibata, and S. Tanaka. Y Iwasaki, T. Kurosaki, and N. Nakabayashi. Improved blood compatibility of segmented polyurethanes by polymeric additives having phospholipid polar group. II. Dispersion state of polymeric additive and protein adsorption on the surface. J. Biomed. Mater. { vn32}:401–408 (1996).Google Scholar
  78. 78.
    Y. Iwasaki, Y. Aiba, N. Morimoto, N. Nakabayashi, and K. Ishihara. Semi-interpenetrating polymer networks composed of biocompatible phospholipid polymer and segmented polyurethane. J. Biomed. Mater. { vn52}:701–708 (2000).Google Scholar
  79. 79.
    K. Ishihara, H. Nomura, T. Mihara, K. Kurita, Y. Iwasaki, and N. Nakabayashi. Why do phospholipid polymers reduce protein adsorption? J. Biomed. Mater. Res. { vn39}:323–330 (1998).Google Scholar
  80. 80.
    K. Ishihara, Y. Iwasaki, and C. Nojiri. Phospholipid polymer biomaterials for making ventricular assist devices. J. Conges. Heart Circul. Support { vn1}:265–270 (2001).Google Scholar
  81. 81.
    T. Yoneyama, K. Ishihara, and N. Nakabayashi. M Ito, Y. Mishima, Short term in vivo evaluation of small-diameter vascular prosthesis composed of segmented poly(etherurethane)/ 2-methacryloxyethyl phosphorylcholine polymer blend. J. Biomed. Mater. Res. { vn43}:15–20 (1998).Google Scholar
  82. 82.
    L. Dekie, V. Toncheva, P. Dubruel, E. H. Schacht, L. Barrett, and L. W. Seymour. Poly L-glutamic acid derivatives as vectors for gene therapy. J. Control. Rel. { vn65}:187–202 (2000).Google Scholar
  83. 83.
    P. Ferruti, S. Knobloch, E. Ranucci, E. Gianasi, and R. Duncan. A novel chemical modification of poly-L-lysine reducing toxicity while preserving cationic properties. Proc. Int. Symp. Control. Rel. Bioact. Mater. { vn24}:45–46 (1997).Google Scholar
  84. 84.
    P. Ferruti, E. Ranucci, L. Sartore, F. Bingnotti, M. A. Marchisio, P. Bianciardi, and F. M. Veronese. Recent results on functional polymers and macromonomers of interests as biomaterials or for biomaterial modification. Biomaterials { vn15}:1235–1241 (1994).Google Scholar
  85. 85.
    W. Lin, M. C. Garnett, M. C. Davies, F. Bignotti, P. Ferruti, S. S. Davis, and L. Illum. Preparation of surface-modified albumin nanospheres. Biomaterials { vn18}:559–565 (1997).Google Scholar
  86. 86.
    P. Ferruti, M. A. Marchisio, and R. Barbucci. Synthesis, physicochemical properties and biomedical applications of poly(amidoamine) s. Polymer { vn26}:1336–1348 (1985).Google Scholar
  87. 87.
    D. Fischer, Y. Li, B. Ahlemeyer, J. Krieglstein, and T. Kissel. In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials { vn24}:1121–1131 (2003).Google Scholar
  88. 88.
    O. Wichterle and D. Lim. Hydrophilic gel in biologic use. Nature { vn185}:117 (1960).Google Scholar
  89. 89.
    N. A. Pappas. Hydrogels in Medicine and Pharmacy,CRC Press, Boca Raton, FL, 1987.Google Scholar
  90. 90.
    D. Derossi, K. Kajiwara, Y. Osada, and A. Yamauchi. Polymergels, Fundamentals and Biomedical Applications, Plenum, New York, 1991.Google Scholar
  91. 91.
    A. S. Hoffman. Hydrogel for biomedical applications. Adv. Drug Del. Rev. { vn54}:3–12 (2002).Google Scholar
  92. 92.
    T. Miyata, T. Uragami, and K. Nakamae. Biomolecule-sensitive hydrogels. Adv. Drug Del. Rev. { vn54}:79–98 (2002).Google Scholar
  93. 93.
    K. Smetana Jr., J. Lukas, V. Paleckova, J. Bartunkova, F.-T. Liu, J. Vacik, and H.-J. Gabius. Effect of chemical structure of hydrogels on the adhesion and phenotypic characteristics of human monocytes such as expression of galectins and other carbohydrate-binding sites. Biomaterials { vn18}:1009–1014 (1997).Google Scholar
  94. 94.
    K. Smetana Jr., J. Vacik, D. Souckova, and J. Sule. The influence of hydrogel functional groups on cell behavior. J. Biomed. Mater. Res. { vn24}:463–470 (1990).Google Scholar
  95. 95.
    K. Sawada, T. Shimoyama, P. S. Malchesky, J. B. Goldcamp, and S. Omokawa. Evaluation of a relationship between polymer bulk hydroxyl and surface oxygen content and in vitro serummaterial interaction. J. Biomed. Mater. Res. { vn27}:547–555 (1993).Google Scholar
  96. 96.
    K. Sawada, P. S. Malchesky, J. M. Guidubaldi, A. Sueoka, T., Shimoyama. In vitro evaluation of relationship between human serum-or plasma-material interaction and. polymer bulk hydroxyl and surface oxygen content. ASAIO J. { vn39}:910–917 (1993).Google Scholar
  97. 97.
    N. Ashammakhi and P. Rokkanen. Absorbable polyglycolide device in trauma and bone surgery. Biomaterials { vn18}:3–9 (1997).Google Scholar
  98. 98.
    N. Kumar, R. S. Langer, and A. J. Domb. Polyanhydrides: an overview. Adv. Drug Del. Rev. { vn54}:889–910 (2002).Google Scholar
  99. 99.
    B. Burnham. Polymers for delivering peptides and proteins. Am. J. Hosp. Pharm. { vn51}:210–218 (1994).Google Scholar
  100. 100.
    Y. Tsutsumi, T. Kihira, S.-I. Tsunoda, N. Okada, Y. Kaneda, Y. Ohsugi, M. Nakagawa, and T. Mayumi. Polyethelene glycol modification of interleukin-6 enhances its thrombopoietic activity. J. Control. Rel. { vn33}:447–451 (1995).Google Scholar
  101. 101.
    R. Cref, Y. Minamitake, M. T. Peracchia, V. Trubetskoy, V. Torchilin, and R. Langer. Biodegradable long circulating polymer nanospheres. Science { vn263}:1600–1603 (1994).Google Scholar
  102. 102.
    R. Cref, A. Domb, P. Quellec, T. Blunk, R. H. Muller, J. M. Verbavatz, and R. Langer. The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres. Adv. Drug Del. Rev. { vn16}:215–233 (1995).Google Scholar
  103. 103.
    C. Scholz, M. Iijima, Y. Nagasaki, and K. Kataoka. A novel reactive polymeric micelles with aldehyde groups on its surface. Macromolecules { vn28}:7295–7297 (1995).Google Scholar
  104. 104.
    X. Chang and H. M. Burt. Diblock copolymers of poly(DLlactide)-block-methoxy poly(ethylene glycol) as micellar carrier of Taxol. Pharm. Res. { vn12}:S265-269 (1995).Google Scholar
  105. 105.
    K. M. Yamada. Adhesive recognition sequences. J. Biol. Chem. { vn266}:12809–12812 (1991).Google Scholar
  106. 106.
    R. Pasqualini and E. Ruosiahti. Organ targeting in vivo using phage display peptide libraries. Nature { vn380}:364–366 (1996).Google Scholar
  107. 107.
    D. J. Irvine, A. M. Mayes, and L. G. Griffith. Nanoscale clustering of RGD peptides at surfaces using comb polymers. 1. Synthesis and characterization of comb thin films. Biomacromolecules { vn2}:85–94 (2001).Google Scholar
  108. 108.
    D. J. Irvine, A.-V. G. Ruzette, A. M. Mayes, and L. G. Griffith. Nanoscale clustering of RGD peptides at surfaces using comb polymers. 2. Surface segregation of comb polymers in polylactide. Biomacromolecules { vn2}:545–556 (2001).Google Scholar
  109. 109.
    P. Banerjee, D. J. Irvine, A. M. Mayes, and L. G. Griffith. Polymer latexes for cell-resistant and cell-interactive surfaces. J. Biomed. Mater. Res. { vn5}0:331–339 (2000).Google Scholar
  110. 110.
    L. Y. Koo, D. J. Irvine, A. M. Mayes, D. A. Lauffenburger, and L. G. Griffith. Co-regulation of cell adhesion by nanoscale RGD organization and mechanical stimulus. J. Cell Sci. { vn115}:1423–1433 (2002).Google Scholar
  111. 111.
    C. Roberts, C. S. Chen, M. Mrksich, V. Martichonok, D. E. Ingber, and G. M. Whitesides. Using mixed self-assembled monolayers presenting RGD and (EG)3OH groups to characterize long-term attachment of bovine capillary endothelial cells to surface. J. Am. Chem. Soc. { vn120}:6548–6555 (1998).Google Scholar
  112. 112.
    S. M. Cannizzaro, R. F. Padera, R. Langer, R. A. Rogers, F. E. Black, M. C. Davies, S. J. B. Tendler, and K. M. Shakesheff. A novel biotinylated degradable polymer for cell-interactive application. Biotechnol. Bioeng. { vn58}:529–535 (1998).Google Scholar
  113. 113.
    E. J. Gordon, W. J. Sanders, and L. L. Kiessling. Synthetic ligands point to cell surface strategies. Nature { vn392}:30–31 (1998).Google Scholar
  114. 114.
    L. J. Strausbaugh. Intracarotid infusions of protamine sulfate disrupts the blood-brain barrier of rabbits. Brain Res. { vn409}:221–226 (1987).Google Scholar
  115. 115.
    J. C. Horrow. Protamine: a review of its toxicity. Anesth. Analog. { vn64}:221–226 (1985).Google Scholar
  116. 116.
    I. Westrgren and B. B. Jhansson. Altering the blood-brain barrier in the rat by intracarotid infusion of polycations: a comparison between potamine, poly-L-lysine and poly-L-arginine. Acta Physiol. Scand. { vn149}:99–104 (1993).Google Scholar
  117. 117.
    J. A. Broestle and S. N. Emancipator. Rat mesangial cell lysis in vitro is induced by cationic polypeptides. Am. J. Pathol. { vn142}: 529–539 (1993).Google Scholar
  118. 118.
    S. Choksakulnimitr, S. Masuda, H. Tokuda, Y. Takakura, and M. Hashida. In vitro cytotoxicity of macromolecules in different cell culture systems. J. Control. Rel. { vn34}:233–241 (1995).Google Scholar
  119. 119.
    F. Maillet, D. Labarre, and M. D. Kazatchkine. The role of naturally-occurring antibodies against man-made materials in biocompatibility. Transfus. Sci. { vn11}:33–41 (1990).Google Scholar
  120. 120.
    B. Rihova. Biocompatibility of biomaterials: hemocompatibility, immunocompatibility and biocompatibility of solid polymeric materials and soluble polymeric carriers. Adv. Drug Del. Rev. { vn21}:157–176 (1996).Google Scholar
  121. 121.
    P. J. Baker, T. F. Lint, B. C. Mcleod, C. C. Behrends, and J. Gewurz. Studies on the inhibition of C56-induced lysis (reactive lysis). VI. Modulation of C56-induced lysis by polyanions and polycations. J. Immunol. { vn114}:554–558 (1976).Google Scholar
  122. 122.
    M. Loos, J. E. Volanakis, and R. M. Stroud. Mode of interaction of different polyanions with the first (C1, C1), the second (C2) and the forth (C4) component of complement-III, Inhibition of C4 and C2 binding site(s) on C1s by polyanions. Immunochemistry { vn13}:789–791 (1976).Google Scholar
  123. 123.
    E. Raepple, H. U. Hill, and M. Loos. Mode of interaction of different polyanions with the first (C1, C1), the second (C2) and the forth (C4) component of complement-1. Effect of fluid phase C1 and on C1 bound to EA or to EAC4. Immunochemistry { vn13}:251–255 (1976).Google Scholar
  124. 124.
    G. W. Webster and W. P. McArther. Inhibition of the classical and alternative pathway of human and guinea pig complement by pyran copolymer. Int. Arch. Allergy { vn66}:304–309 (1981).Google Scholar
  125. 125.
    W. G. Brodbeck, M. S. Shive, E. Colton, Y. Nakayama, T. Matsuda, and J. M. Anderson. Influence of biomaterial surface chemistry on the apoptosis of adherent cells. J. Biomed. Mater. Res. { vn55}:661–668 (2001).Google Scholar
  126. 126.
    Y. Takakura, T. Fujita, H. Furitsu, M. Nishikawa, H. Sezaki, and M. Hashida. Pharmacokinetics of succinylated proteins and dextran sulfate in mice: implications for hepatic targeting of protein drugs by direct succinylation via seavenger receptors. Int. J. Pharm. { vn105}:19–29 (1994).Google Scholar
  127. 127.
    N. Hamamoto, Y. Hamamoto, T. Nakajima, and H. Ozawa. Histological, histocytochemical and ultrastructural study on the effects of surface charge on bone formation in the rabbit mandible. Arch. Oral Biol. { vn4}0:97–106 (1995).Google Scholar
  128. 128.
    M. Krukowski, R. A. Shively, P. Osdoby, and B. L. Eppley. Stimulation of craniofacial and intramedullary bone formation by negatively charged beads. J. Oral Maxillofac. Surg. { vn48}:468–475 (1990).Google Scholar
  129. 129.
    D. M. Morgan, J. Clover, and J. D. Pearson. Effects of synthetic polycations on leucine incorporation, lactate dehydrogenase release, and morphology of human unbilical vein endothelial call. J. Cell Sci. { vn91}:231–238 (1988).Google Scholar
  130. 130.
    D. M. Morgan, V. L. Larvin, and J. L. Pearson. Biochemical characterization of polycation-induced cytotoxicity to human vascular endothelial cells. J. Cell Sci. { vn94}:553–559 (1989).Google Scholar
  131. 131.
    J. Haensler and F. C. Szoka. Polyamidoamine cascade polymer mediate efficient transfection of cell in culture. Bioconj. Chem. { vn4}:372–379 (1993).Google Scholar
  132. 132.
    D. Fischer, T. Bieber, H. P. Elsasser, and T. Kissel. Polyethylenimine: synthesis and in vitro cytotoxicity of low molecular weight polycation for gene transfer. Eur. J. Cell Biol. { vn75}:108–112 (1998).Google Scholar
  133. 133.
    D. Fischer, T. Bieber, Y. Li, H.-P. Elsasser, and T. Kissel. A novel non-viral vector for DNA delivery based on low molecular weight, branched polyethylenimine: effect of molecular weight on transfection efficiency and cytotoxicity. Pharm. Res. { vn16}:1273–1279 (1999).Google Scholar
  134. 134.
    H. J. P. Ryser. A membrane effect of basic polymers dependent on molecular size. Nature { vn215}:45–46 (1967).Google Scholar
  135. 135.
    A. K. Singh, B. S. Kasinath, and E. J. Lewis. Interaction of polycations with cell-surface negative charges of epithelial cells. Biochim. Biophys. Acta { vn1120}:337–342 (1992).Google Scholar
  136. 136.
    D. M. Brunnette. The effect of implant surface topography on the behavior of cell. Int. J. Oral Maxillofac. Implants { vn3}:231–246 (1988).Google Scholar
  137. 137.
    D. M. Brunnette. The effect of surface topography on cell migration and adhesion. In R.D. Ratner (ed.), Surface Characterization of Biomaterials, Elsevier, Amsterdam, 1988, pp. 203–217.Google Scholar
  138. 138.
    C.E. Campbell and A.F. von Recum. Micro-topography and soft tissue response. J. Invest. Surg. { vn2}:51–74 (1989).Google Scholar
  139. 139.
    J. A. Schmidt and A. F. von Recum. Texturing of polymer surfaces at the cellular level. Biomaterials { vn12}:385–389 (1991).Google Scholar
  140. 140.
    J. I. Sheppard, W. G. McClung, and I. A. Feuerstein. Adherent platelet morphology on absorbed fibrinogen: effects of protein incubation time and albumin addition. J. Biomed. Mater. Res. { vn28}:1175–1186 (1994).Google Scholar
  141. 141.
    J. S. Burmeister, J. D. Vrany, W. M. Reidhert, and G. A. Truskey. Effect of fibronectin amount and conformation on the strength of endothelial cell adhesion to HEMA/EMA copolymers. J. Biomed. Mater. Res. { vn30}:13–22 (1996).Google Scholar
  142. 142.
    M. Lampin, R. Warocquier-Clerout, C. Legris, M. Degrange, and M. F. Sigot-Luizard. Correlation between substratum roughness and wettability, cell adhesion, and cell migration. J. Biomed. Mater. Res. { vn36}:99–108 (1997).Google Scholar
  143. 143.
    A. Curtis and C. Wilkinson. Topographical control of cells. Biomaterials { vn18}:1573–1583 (1997).Google Scholar
  144. 144.
    C. S. Ranucci and P. V. Moghe. Substrate microtopography can enhance cell adhesive and migratory responsiveness to matrix ligand density. J. Biomed. Mater. Res. { vn54}:149–161 (2001).Google Scholar
  145. 145.
    B. Kasemo. Biological surface science. Surface Science { vn500}:656–677 (2002).Google Scholar
  146. 146.
    D. Qin, Y. Xia, J. A. Rogers, R. J. Jackman, X.-M. Zhao, and G. M. Whitesides. Microfabrication, microstructures and microsystems. In A. Manz and H. Becker (eds.), Microsystem Technology in Chemistry and Life Science, Springer-Verlag, Berlin, 1998, pp. 1–20.Google Scholar
  147. 147.
    R. S. Kane, S. Takayama, E. Ostuni, D. E. Ingber, and G. M. Whitesides. Patterning proteins and cells using soft lithography. Biomaterials { vn20}:2363–2376 (1999).Google Scholar
  148. 148.
    S. Zhang, L. Yan, M. Altman, M. Lassle, H. Nugent, F. Frankel, D. A. Lauffenburger, G. M. Whietsides, and A. Rich. Biological surface engineering: a simple system for cell pattern formation. Biomaterials { vn20}:1213–1220 (1999).Google Scholar
  149. 149.
    R. C. Chapman, E. Ostuni, L. Yan, and G. M. Whitesides. Preparation of mixed self-assembled monolayers (SAMs) that resist adsorption of proteins using the reaction of amines with a SAM that present interchain carboxylic anhydride groups. Langmuir { vn16}:6927–6936 (2000).Google Scholar
  150. 150.
    P. Korbelar, J. Vacik, and I. Dylevsky. Experimental implantation of hydrogel into the bone. J. Biomed. Mater. Res. { vn22}:751–762 (1988).Google Scholar
  151. 151.
    P. J. VandeVord, H. W. T. Matthew, S. P. DeSilva, L. Mayton, B. Wu, and P. H. Wooley. Evaluation of the biocompatibility of a chitosan scaffold in mice. J. Biomed. Mater. Res. { vn59}:585–590 (2002).Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • You-Xiong Wang
    • 1
  • John L. Robertson
    • 2
  • William B. SpillmanJr.
    • 3
  • Richard O. Claus
    • 1
  1. 1.Fiber & Electro-Optics Research CenterVirginia TechBlacksburgUSA
  2. 2.Department of Biomedical Sciences and PathobiologyVirginia-Maryland Regional College of Veterinary MedicineBlacksburgUSA
  3. 3.Virginia Tech Applied Biosciences CenterVirginia TechBlacksburgUSA

Personalised recommendations