Advertisement

Pharmaceutical Research

, Volume 21, Issue 7, pp 1294–1302 | Cite as

P-glycoprotein Expression, Localization, and Function in Sandwich-Cultured Primary Rat and Human Hepatocytes: Relevance to the Hepatobiliary Disposition of a Model Opioid Peptide

  • Keith A. Hoffmaster
  • Ryan Z. Turncliff
  • Edward L. LeCluyse
  • Richard B. Kim
  • Peter J. Meier
  • Kim L. R. BrouwerEmail author
Article

Abstract

Purpose. The isolation of hepatocytes from intact liver involves collagenase digestion of the tissue, resulting in loss of cell polarization and functional vectorial excretion. These studies examined re-polarization, localization of P-glycoprotein (P-gp) to the canalicular domain of the hepatocyte, and re-establishment of vectorial transport in sandwich-cultured (SC) rat and human primary hepatocytes.

Methods. Protein localization and expression were determined in SC hepatocytes by confocal microscopy and Western blotting, respectively. Transporter function was evaluated by measuring [D-penicillamine2,5]enkephalin (3H-DPDPE) and 5 (and 6)-carboxy-2′,7′-dichlorofluorescein (CDF) biliary excretion in SC hepatocytes.

Results. P-gp and the canalicular marker protein dipeptidyl peptidase IV (DPPIV) co-localized by Day 3 and Day 6 in SC rat hepatocytes and SC human hepatocytes, respectively, consistent with canalicular network formation visualized by light microscopy. Co-localization of multidrug resistance associated protein 2 (MRP2) and P-gp in SC human hepatocytes was observed on Day 6 in culture. Expression levels of P-gp increased slightly in both species over days in culture; similar expression was observed for MRP2 in SC human hepatocytes. Oatp1a1 expression in SC rat hepatocytes was maintained over days in culture, whereas Oatp1a4 expression decreased. OATP1B1 expression decreased slightly on Day 3 in SC human hepatocytes. OATP1B3 expression was constant in SC human hepatocytes. In vitro biliary excretion of the opioid peptide 3H-DPDPE correlated with the proper localization of canalicular proteins in both species. Excretion of CDF in SC human hepatocytes confirmed network formation and MRP2 function.

Conclusions. These studies indicate that SC hepatocytes repolarize and traffic functional canalicular transport proteins to the appropriate cellular domain.

cell culture biliary excretion drug transport drug transport models hepatocytes P-glycoprotein 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. V. Ambudkar, S. Dey, C. A. Hrycyna, M. Ramachandra, I. Pastan, and M. M. Gottesman. Biochemical, cellular, and pharmacological aspects of the multidrug transporter. Annu. Rev. Pharmacol. Toxicol. 39:361-398 (1999).Google Scholar
  2. 2.
    F. Thiebaut, T. Tsuruo, H. Hamada, M. M. Gottesman, I. Pastan, and M. C. Willingham. Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc. Natl. Acad. Sci. U.S.A. 84:7735-7738 (1987).Google Scholar
  3. 3.
    Y. Kamimoto, Z. Gatmaitan, J. Hsu, and I. M. Arias. The function of Gp170, the multidrug resistance gene product, in rat liver canalicular membrane vesicles. J. Biol. Chem. 264:11693-11698 (1989).Google Scholar
  4. 4.
    N. Lomri, J. G. Fitz, and B. F. Scharschmidt. Hepatocellular transport: role of ATP-binding cassette proteins. Semin. Liver Dis. 16:201-210 (1996).Google Scholar
  5. 5.
    M. Maurice, E. Rogier, D. Cassio, and G. Feldmann. Formation of plasma membrane domains in rat hepatocytes and hepatoma cell lines in culture. J. Cell Sci. 90:79-92 (1988).Google Scholar
  6. 6.
    X. Liu, K. L. R. Brouwer, L. S. Gan, K. R. Brouwer, B. Stieger, P. J. Meier, K. L. Audus, and E. L. LeCluyse. Partial maintenance of taurocholate uptake by adult rat hepatocytes cultured in a collagen sandwich configuration. Pharm. Res. 15:1533-1539 (1998).Google Scholar
  7. 7.
    E. L. LeCluyse, K. L. Audus, and J. H. Hochman. Formation of extensive canalicular networks by rat hepatocytes cultured in collagen-sandwich configuration. Am. J. Physiol. 266:C1764-C1774 (1994).Google Scholar
  8. 8.
    J. C. Dunn, M. L. Yarmush, H. G. Koebe, and R. G. Tompkins. Hepatocyte function and extracellular matrix geometry: long-term culture in a sandwich configuration. FASEB J. 3:174-177 (1989).Google Scholar
  9. 9.
    C. Chen and G. M. Pollack. Enhanced antinociception of the model opioid peptide [D-penicillamine 2,5] enkephalin by P-glycoprotein modulation. Pharm. Res. 16:296-301 (1999).Google Scholar
  10. 10.
    C. Chen and G. M. Pollack. Altered disposition and antinociception of [D-penicillamine(2,5)] enkephalin in mdr1a-gene-deficient mice. J. Pharmacol. Exp. Ther. 287:545-552 (1998).Google Scholar
  11. 11.
    K. A. Hoffmaster, M. J. Zamek-Gliszczynski, G. M. Pollack, and K. L. R. Brouwer. Mechanisms of hepatic uptake and biliary excretion of the metabolically stable P-glycoprotein (P-gp) substrate [D-Pen2,5]-enkephalin (DPDPE). Drug Metab. Rev. 35:158(2003).Google Scholar
  12. 12.
    V. Cattori, J. E. van Montfoort, B. Stieger, L. Landmann, D. K. Meijer, K. H. Winterhalter, P. J. Meier, and B. Hagenbuch. Localization of organic anion transporting polypeptide 4 (Oatp4) in rat liver and comparison of its substrate specificity with Oatp1, Oatp2 and Oatp3. Pflugers Arch. 443:188-195 (2001).Google Scholar
  13. 13.
    G. A. Kullak-Ublick, M. G. Ismair, B. Stieger, L. Landmann, R. Huber, F. Pizzagalli, K. Fattinger, P. J. Meier, and B. Hagenbuch. Organic anion-transporting polypeptide B (OATP-B) and its functional comparison with three other OATPs of human liver. Gastroenterology 120:525-533 (2001).Google Scholar
  14. 14.
    X. Liu, J. P. Chism, E. L. LeCluyse, K. R. Brouwer, and K. L. R. Brouwer. Correlation of biliary excretion in sandwich-cultured rat hepatocytes and in vivo in rats. Drug Metab. Dispos. 27:637-644 (1999).Google Scholar
  15. 15.
    U. Eckhardt, A. Schroeder, B. Stieger, M. Hochli, L. Landmann, R. Tynes, P. J. Meier, and B. Hagenbuch. Polyspecific substrate uptake by the hepatic organic anion transporter Oatp1 in stably transfected CHO cells. Am. J. Physiol. 276:G1037-G1042 (1999).Google Scholar
  16. 16.
    E. L. LeCluyse, P. L. Bullock, A. Parkinson, and J. H. Hochman. Cultured rat hepatocytes. Pharm. Biotechnol. 8:121-159 (1996).Google Scholar
  17. 17.
    X. Liu, E. L. LeCluyse, K. R. Brouwer, R. M. Lightfoot, J. I. Lee, and K. L. R. Brouwer. Use of Ca2+ modulation to evaluate biliary excretion in sandwich-cultured rat hepatocytes. J. Pharmacol. Exp. Ther. 289:1592-1599 (1999).Google Scholar
  18. 18.
    J. M. Macdonald, A. S. Xu, K. Hiroshi, E. LeCluyse, G. Hamilton, H. Liu, Y. W. Rong, N. Moss, C. Lodestro, T. Luntz, S. P. Wolfe, and L. M. Reid. Ex vivo maintenance of cells from the liver lineage. In A. Atala and R. P. Lanza (eds.), Methods in Tissue Engineering, Academic Press, San Diego, 2001 pp. 151-202.Google Scholar
  19. 19.
    M. J. Zamek-Gliszczynski, H. Xiong, N. J. Patel, R. Z. Turncliff, G. M. Pollack, and K. L. R. Brouwer. Pharmacokinetics of 5 (and 6)-carboxy-2′,7′-dichlorofluorescein and its diacetate promoiety in the liver. J. Pharmacol. Exp. Ther. 304:801-809 (2003).Google Scholar
  20. 20.
    P. K. Smith, R. I. Krohn, G. T. Hermanson, A. K. Mallia, F. H. Gartner, M. D. Provenzano, E. K. Fujimoto, N. M. Goeke, B. J. Olson, and D. C. Klenk. Measurement of protein using bicinchoninic acid. Anal. Biochem. 150:76-85 (1985).Google Scholar
  21. 21.
    B. Gao, B. Hagenbuch, G. A. Kullak-Ublick, D. Benke, A. Aguzzi, and P. J. Meier. Organic anion-transporting polypeptides mediate transport of opioid peptides across blood-brain barrier. J. Pharmacol. Exp. Ther. 294:73-79 (2000).Google Scholar
  22. 22.
    G. D. Luker, J. L. Dahlheimer, R. E. Ostlund, Jr., and D. Piwnica-Worms. Decreased hepatic accumulation and enhanced esterification of cholesterol in mice deficient in mdr1a and mdr1b P-glycoproteins. J. Lipid Res. 42:1389-1394 (2001).Google Scholar
  23. 23.
    M. A. Talamini, B. Kappus, and A. Hubbard. Repolarization of hepatocytes in culture. Hepatology 25:167-172 (1997).Google Scholar
  24. 24.
    J. H. Hayes, C. J. Soroka, L. Rios-Velez, and J. L. Boyer. Hepatic sequestration and modulation of the canalicular transport of the organic cation, daunorubicin, in the rat. Hepatology 29:483-493 (1999).Google Scholar
  25. 25.
    S. Misra, L. Varticovski, and I. M. Arias. Mechanisms by which cAMP increases bile acid secretion in rat liver and canalicular membrane vesicles. Am. J. Physiol. Gastrointest. Liver Physiol. 285:G316-G324 (2003).Google Scholar
  26. 26.
    J. E. Casanova, Y. Mishumi, Y. Ikehara, A. L. Hubbard, and K. E. Mostov. Direct apical sorting of rat liver dipeptidylpeptidase IV expressed in Madin-Darby canine kidney cells. J. Biol. Chem. 266:24428-24432 (1991).Google Scholar
  27. 27.
    P. Chandra, E. L. Lecluyse, and K. L. R. Brouwer. Optimization of culture conditions for determining hepatobiliary disposition of taurocholate in sandwich-cultured rat hepatocytes. In Vitro Cell. Dev. Biol. Anim. 37:380-385 (2001).Google Scholar
  28. 28.
    J. C. Dunn, R. G. Tompkins, and M. L. Yarmush. Long-term in vitro function of adult hepatocytes in a collagen sandwich configuration. Biotechnol. Prog. 7:237-245 (1991).Google Scholar
  29. 29.
    W. Xie, A. Radominska-Pandya, Y. Shi, C. M. Simon, M. C. Nelson, E. S. Ong, D. J. Waxman, and R. M. Evans. An essential role for nuclear receptors SXR/PXR in detoxification of cholestatic bile acids. Proc. Natl. Acad. Sci. U.S.A. 98:3375-3380 (2001).Google Scholar
  30. 30.
    J. L. Staudinger, B. Goodwin, S. A. Jones, D. Hawkins-Brown, K. I. MacKenzie, A. LaTour, Y. Liu, C. D. Klaassen, K. K. Brown, J. Reinhard, T. M. Willson, B. H. Koller, and S. A. Kliewer. The nuclear receptor PXR is a lithocholic acid sensor that protects against liver toxicity. Proc. Natl. Acad. Sci. U.S.A. 98:3369-3374 (2001).Google Scholar
  31. 31.
    J. R. Plass, O. Mol, J. Heegsma, M. Geuken, K. N. Faber, P. L. Jansen, and M. Muller. Farnesoid X receptor and bile salts are involved in transcriptional regulation of the gene encoding the human bile salt export pump. Hepatology 35:589-596 (2002).Google Scholar
  32. 32.
    D. Jung, M. Podvinec, U. A. Meyer, D. J. Mangelsdorf, M. Fried, P. J. Meier, and G. A. Kullak-Ublick. Human organic anion transporting polypeptide 8 promoter is transactivated by the farnesoid X receptor/bile acid receptor. Gastroenterology 122:1954-1966 (2002).Google Scholar
  33. 33.
    J. Staudinger, Y. Liu, A. Madan, S. Habeebu, and C. D. Klaassen. Coordinate regulation of xenobiotic and bile acid homeostasis by pregnane X receptor. Drug Metab. Dispos. 29:1467-1472 (2001).Google Scholar
  34. 34.
    T. K. Tippin, G. Hamilton, L. Moore, E. J. Beaudet, S. Jolley, T. A. Brodie, R. C. Andrews, J. D. Becherer, D. L. McDougald, M. D. Gaul, D. J. Hoivik, K. Mellon-Kusibab, J. Lehmann, S. Kliewer, S. Novick, R. Laethem, Z. Zhao, and E. L. LeCluyse. CYP3A induction by N-hydroxyformamide tumor necrosis factor-alpha converting enzyme/matrix metalloproteinase inhibitors use of a pregname X receptor activation assay and primary hepatocyte culture for assessing induction potential in humans. Drug Metab. Dispos. 31:870-877 (2003).Google Scholar
  35. 35.
    H. Wang, S. R. Faucette, D. Gilbert, S. L. Jolley, T. Sueyoshi, M. Negishi, and E. L. LeCluyse. Glucocorticoid receptor enhancement of pregnane X receptor-mediated CYP2B6 regulation in primary human hepatocytes. Drug Metab. Dispos. 31:620-630 (2003).Google Scholar
  36. 36.
    J. Sahi, M. A. Milad, X. Zheng, K. A. Rose, H. Wang, L. Stilgenbauer, D. Gilbert, S. Jolley, R. H. Stern, and E. L. LeCluyse. Avasimibe induces CYP3A4 and multiple drug resistance protein 1 gene expression through activation of the pregnane X receptor. J. Pharmacol. Exp. Ther. 306:1027-1034 (2003).Google Scholar
  37. 37.
    M. Cvetkovic, B. Leake, M. F. Fromm, G. R. Wilkinson, and R. B. Kim. OATP and P-glycoprotein transporters mediate the cellular uptake and excretion of fexofenadine. Drug Metab. Dispos. 27:866-871 (1999).Google Scholar
  38. 38.
    S. J. Rippin, B. Hagenbuch, P. J. Meier, and B. Stieger. Cholestatic expression pattern of sinusoidal and canalicular organic anion transport systems in primary cultured rat hepatocytes. Hepatology 33:776-782 (2001).Google Scholar
  39. 39.
    G. Zollner, P. Fickert, D. Silbert, A. Fuchsbichler, H. U. Marschall, K. Zatloukal, H. Denk, and M. Trauner. Adaptive changes in hepatobiliary transporter expression in primary biliary cirrhosis. J. Hepatol. 38:717-727 (2003).Google Scholar
  40. 40.
    P. Zhang, P. Chandra, N. Kramarcy, and K. L. R. Brouwer. Time course of multidrug resistance-associated protein (Mrp) 2 expression, localization, and function in sandwich-cultured rat hepatocytes. AAPS Pharm. Sci. 3:3(2001).Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • Keith A. Hoffmaster
    • 1
  • Ryan Z. Turncliff
    • 1
  • Edward L. LeCluyse
    • 1
  • Richard B. Kim
    • 2
  • Peter J. Meier
    • 3
  • Kim L. R. Brouwer
    • 1
    Email author
  1. 1.Division of Drug Delivery and DispositionSchool of Pharmacy, University of North CarolinaChapel HillUSA
  2. 2.Division of Clinical Pharmacology, Departments of Medicine and PharmacologyVanderbilt University School of MedicineNashvilleUSA
  3. 3.Division of Clinical Pharmacology, Department of MedicineUniversity HospitalZurichSwitzerland

Personalised recommendations