Advertisement

Pharmaceutical Research

, Volume 21, Issue 7, pp 1214–1222 | Cite as

Reverse Iontophoresis as a Noninvasive Tool for Lithium Monitoring and Pharmacokinetic Profiling

  • Benoît Leboulanger
  • Marc Fathi
  • Richard H. Guy
  • M. Begoña Delgado-Charro
Article

Abstract

Purpose. Transdermal iontophoresis was investigated as a noninvasive tool for drug monitoring and pharmacokinetic profiling. Lithium, a frequently monitored drug, was used as a model. The objectives were a) to demonstrate the linear dependence of the iontophoretic extraction flux of lithium on the subdermal concentration of the drug, b) to evaluate the capacity of iontophoresis to monitor sudden changes in the subdermal level, c) to investigate the utility of reverse iontophoresis as a tool in pharmacokinetic studies, and d) to examine the validity of an internal standard calibration procedure to render the method completely noninvasive.

Methods. Transdermal, iontophoretic extraction was performed in vitro using dermatomed pig-ear skin. The subdermal solution consisted of a physiological buffer containing lithium chloride at concentrations in the therapeutic range and two putative internal standards, sodium and potassium, at fixed physiological levels. The subdermal concentration of lithium was changed either in a stepwise fashion or by simulating one of two pharmacokinetic profiles.

Results. Lithium was extracted via electromigration to the cathode. A excellent correlation between subdermal lithium concentration and iontophoretic extraction flux was observed. Iontophoresis tracked sudden concentration changes and followed kinetic profiles. In addition, the effective elimination rate constant could be directly, and noninvasively, estimated from the extraction flux data.

Conclusions. Reverse iontophoresis is a potentially useful and noninvasive tool for lithium monitoring.

iontophoresis lithium reverse iontophoresis therapeutic drug monitoring transdermal extraction. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Bailey, J. Klein, and G. Koren. Noninvasive methods for drug measurement in pediatrics. Pediatr. Clin. North Am. 44:15-26 (1997).Google Scholar
  2. 2.
    L. J. Rice. Needle phobia. An anesthesiologist's perspective. J. Peadiatr. 122:S9-S13 (1993).Google Scholar
  3. 3.
    A. Amdisen. Serum concentration and clinical supervision in monitoring of lithium treatment. Ther. Drug Monit. 2:73-83 (1980).Google Scholar
  4. 4.
    A. Amdisen. Serum level monitoring and clinical pharmacokinetics of lithium. Clin. Pharmacokinet. 2:73-92 (1977).Google Scholar
  5. 5.
    R. F. Kehoe. Monitoring lithium treatment. BMJ 306:269-270 (1993).Google Scholar
  6. 6.
    M. Schou. Lithium treatment during pregnancy, delivery, and lactation: an update. J. Clin. Psychiatry 51:410-413 (1990).Google Scholar
  7. 7.
    S. Pichini, I. Altieri, P. Zuccaro, and R. Pacifici. Drug monitoring in nonconventional biological fluids and matrices. Clin. Pharmacokinet. 30:211-228 (1996).Google Scholar
  8. 8.
    J. P. Moody. Biologic variation of serum and salivary lithium. Ther. Drug Monit. 21:97-101 (1999).Google Scholar
  9. 9.
    R. Obach, J. Borja, J. Prunonosa, J. M. Valles, J. Torrent, I. Izquierdo, and F. Jane. Lack of correlation between lithium pharmacokinetic parameters obtained from plasma and saliva. Ther. Drug Monit. 10:265-268 (1988).Google Scholar
  10. 10.
    M. B. Delgado-Charro and R. H. Guy. Transdermal reverse iontophoresis of valproate: a non-invasive method for therapeutic drug monitoring. Pharm. Res. 20:1508-1513 (2003).Google Scholar
  11. 11.
    B. Leboulanger, R. H. Guy, and M. B. Delgado-Charro. Reverse iontophoretic monitoring of free phenytoin. Ther. Drug Monit. 25:499(2003).Google Scholar
  12. 12.
    V. Merino, A. Lopez, D. Hochstrasser, and R. H. Guy. Noninvasive sampling of phenylalanine by reverse iontophoresis. J. Control. Rel. 61:65-69 (1999).Google Scholar
  13. 13.
    G. Rao, P. Glikfeld, and R. H. Guy. Reverse iontophoresis: development of a non invasive approach for glucose monitoring. Pharm. Res. 10:1751-1755 (1993).Google Scholar
  14. 14.
    J. A. Tamada, N. J. V. Bohannon, and R. O. Potts. Measurement of glucose in diabetic subjects using noninvasive transdermal extraction. Nat. Med. 1:1198-1201 (1995).Google Scholar
  15. 15.
    M. J. Tierney, J. A. Tamada, R. O. Potts, R. C. Eastman, K. Pitzer, N. R. Ackerman, and S. J. Fermi. The GlucoWatch® biographer: a frequent automatic and noninvasive glucose monitor. Ann. Med. 32:632-641 (2000).Google Scholar
  16. 16.
    R. R. Burnette. Iontophoresis. In J. Hadgraft and R. H. Guy (eds.), Transdermal Drug Delivery, Marcel Dekker, New York, 1989, pp. 247-291.Google Scholar
  17. 17.
    P. W. Ledger. Skin biological issues in electrically enhanced transdermal delivery. Adv. Drug Deliv. Rev. 9:289-307 (1992).Google Scholar
  18. 18.
    J. B. Phipps and J. R. Gyory. Transdermal ion migration. Adv. Drug Deliv. Rev. 9:137-176 (1992).Google Scholar
  19. 19.
    M. J. Pikal. The role of electroosmotic flow in transdermal iontophoresis. Adv. Drug Deliv. Rev. 9:201-237 (1992).Google Scholar
  20. 20.
    B. Leboulanger and R. H. Guy. and M. B. Delgado-Charro Reverse iontophoresis for non-invasive transdermal monitoring. Physiol. Meas. 25:R35-R50 (2003).Google Scholar
  21. 21.
    D. Marro, Y. N. Kalia, M. B. Delgado-Charro, and R. H. Guy. Contributions of electromigration and electroosmosis to iontophoretic drug delivery. Pharm. Res. 18:1701-1708 (2001).Google Scholar
  22. 22.
    R. R. Burnette and B. Ongpipattanakul. Characterization of the permselective properties of excised human skin during iontophoresis. J. Pharm. Sci. 76:765-773 (1987).Google Scholar
  23. 23.
    R. O. Potts, J. A. Tamada, and M. J. Tierney. Glucose monitoring by reverse iontophoresis. Diabetes Metab. Res. Rev. 18:S49-S53 (2002).Google Scholar
  24. 24.
    A. Sieg, R. H. Guy, and M. B. Delgado-Charro. Reverse iontophoresis for non-invasive glucose monitoring: the internal standard concept. J. Pharm. Sci. 92:2295-2302 (2003).Google Scholar
  25. 25.
    P. Glikfeld, C. Cullander, R. S. Hinz, and R. H. Guy. A new system for in vitro studies of iontophoresis. Pharm. Res. 5:443-446 (1988).Google Scholar
  26. 26.
    P. G. Green, R. S. Hinz, C. Cullander, G. Yamane, and R. H. Guy. Iontophoretic delivery of amino acids and amino acid derivatives across the skin in vitro. Pharm. Res. 8:1113-1120 (1991).Google Scholar
  27. 27.
    G. Houin. Pharmacocinétique, Edition Marketing, Paris, France, 1990.Google Scholar
  28. 28.
    R. J. Flanagan. Guidelines for the interpretation of analytical toxicology results and unit of measurement conversion factors. Ann. Clin. Biochem. 35:261-267 (1998).Google Scholar
  29. 29.
    M. E. Winter. Lithium. In M. E. Winter (ed), Basic clinical pharmacokinetics, Applied Therapeutics, Vancouver, WA, USA, 1994, pp. 257-265.Google Scholar
  30. 30.
    M. E. Winter. Basic Clinical Pharmacokinetics, Applied Therapeutics, Vancouver, WA, USA, 1994.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • Benoît Leboulanger
    • 1
    • 2
  • Marc Fathi
    • 3
  • Richard H. Guy
    • 1
    • 2
  • M. Begoña Delgado-Charro
    • 1
    • 2
  1. 1.School of PharmacyUniversity of GenevaGeneva 4Switzerland
  2. 2.Centre International de Recherche et d'Enseignement (“Pharmapeptides”), F-ArchampsFrance
  3. 3.Clinical Chemistry Central LaboratoryGeneva University Cantonal HospitalGeneva 14Switzerland

Personalised recommendations