Pharmaceutical Research

, Volume 21, Issue 5, pp 719–735 | Cite as

The Complexities of Hepatic Drug Transport: Current Knowledge and Emerging Concepts

Abstract

Recently, hepatic transport processes have been recognized as important determinants of drug disposition. Therefore, it is not surprising that characterization of the hepatic transport and biliary excretion properties of potential drug candidates is an important part of the drug development process. Such information also is useful in understanding alterations in the hepatobiliary disposition of compounds due to drug interactions or disease states. Basolateral transport systems are responsible for translocating molecules across the sinusoidal membrane, whereas active canalicular transport systems are responsible for the biliary excretion of drugs and metabolites. Several transport proteins involved in basolateral transport have been identified including the Na+-taurocholate co-transporting polypeptide [NTCP (SLC10A1)], organic anion transporting polypeptides [OATPs (SLCO family)], multidrug resistance-associated proteins [MRPs (ABCC family)], and organic anion and cation transporters [OATs, OCTs (SLC22A family)]. Canalicular transport is mediated predominantly via P-glycoprotein (ABCB1), MRP2 (ABCC2), the bile salt export pump [BSEP (ABCB11)], and the breast cancer resistance protein [BCRP (ABCG2)]. This review summarizes current knowledge regarding these hepatic basolateral and apical transport proteins in terms of substrate specificity, regulation by nuclear hormone receptors and intracellular signaling pathways, genetic differences, and role in drug interactions. Transport knockout models and other systems available for hepatobiliary transport studies also are discussed. This overview of hepatobiliary drug transport summarizes knowledge to date in this rapidly growing field and emphasizes the importance of understanding these fundamental processes in hepatic drug disposition.

ABC proteins drug disposition hepatic transport hepatobiliary SLC proteins transporters 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    B. Hagenbuch and P. J. Meier. Organic anion transporting polypeptides of the OATP/ SLC21 family: phylogenetic classification as OATP/ SLCO superfamily, new nomenclature and molecular/ functional properties. Pflugers Arch. 447:653-665 (2004).Google Scholar
  2. 2.
    B. Hagenbuch, B. Stieger, M. Foguet, H. Lubbert, and P. J. Meier. Functional expression cloning and characterization of the hepatocyte Na/bile acid cotransport system. Proc. Natl. Acad. Sci. USA 88:10629-10633 (1991).Google Scholar
  3. 3.
    P. J. Meier, U. Eckhardt, A. Schroeder, B. Hagenbuch, and B. Stieger. Substrate specificity of sinusoidal bile acid and organic anion uptake systems in rat and human liver. Hepatology 26: 1667-1677 (1997).Google Scholar
  4. 4.
    G. Kullak-Ublick, M. G. Ismair, R. Kubitz, M. Schmitt, D. Haussinger, B. Stieger, B. Hagenbuch, P. J. Meier, U. Beuers, and G. Paumgartner. Stable expression and functional characterization of a Na+-taurocholate cotransporting green fluorescent protein in human hepatoblastoma HepG2 cells. Cytotechnology34:1-9 (2000).Google Scholar
  5. 5.
    E. C. Friesema, R. Docter, E. P. Moerings, B. Stieger, B. Hagenbuch, P. J. Meier, E. P. Krenning, G. Hennemann, and T. J. Visser. Identification of thyroid hormone transporters. Biochem. Biophys. Res. Commun. 254:497-501 (1999).Google Scholar
  6. 6.
    L. Li, T. K. Lee, P. J. Meier, and N. Ballatori. Identification of glutathione as a driving force and leukotriene C4 as a substrate for Oatp1, the hepatic sinusoidal organic solute transporter. J. Biol. Chem. 273:16184-16191 (1998).Google Scholar
  7. 7.
    G. A. Kullak-Ublick, M. G. Ismair, B. Stieger, L. Landmann, R. Huber, F. Pizzagalli, K. Fattinger, P. J. Meier, and B. Hagenbuch. Organic anion-transporting polypeptide B (OATP-B) and its functional comparison with three other OATPs of human liver. Gastroenterology 120:525-533 (2001).Google Scholar
  8. 8.
    I. Tamai, J. Nezu, H. Uchino, Y. Sai, A. Oku, M. Shimane, and A. Tsuji. Molecular identification and characterization of novel members of the human organic anion transporter (OATP) family. Biochem. Biophys. Res. Commun. 273:251-260 (2000).Google Scholar
  9. 9.
    G. A. Kullak-Ublick, B. Hagenbuch, B. Stieger, A. W. Wolkoff, and P. J. Meier. Functional characterization of the basolateral rat liver organic anion transporting polypeptide. Hepatology 20: 411-416 (1994).Google Scholar
  10. 10.
    V. Cattori, J. E. van Montfoort, B. Stieger, L. Landmann, D. K. Meijer, K. H. Winterhalter, P. J. Meier, and B. Hagenbuch. Localization of organic anion transporting polypeptide 4 (Oatp4) in rat liver and comparison of its substrate specificity with Oatp1, Oatp2 and Oatp3. Pflugers Arch. 443:188-195 (2001).Google Scholar
  11. 11.
    K. Fujiwara, H. Adachi, T. Nishio, M. Unno, T. Tokui, M. Okabe, T. Onogawa, T. Suzuki, N. Asano, M. Tanemoto, M. Seki, K. Shiiba, M. Suzuki, Y. Kondo, K. Nunoki, T. Shimosegawa, K. Iinuma, S. Ito, S. Matsuno, and T. Abe. Identification of thyroid hormone transporters in humans: different molecules are involved in a tissue-specific manner. Endocrinology 142: 2005-2012 (2001).Google Scholar
  12. 12.
    R. G. Tirona and R. B. Kim. Pharmacogenomics of organic anion-transporting polypeptides (OATP). Adv. Drug Deliv. Rev. 54:1343-1352 (2002).Google Scholar
  13. 13.
    T. Sekine, S. H. Cha, M. Tsuda, N. Apiwattanakul, N. Nakajima, Y. Kanai, and H. Endou. Identification of multispecific organic anion transporter 2 expressed predominantly in the liver. FEBS Lett. 429:179-182 (1998).Google Scholar
  14. 14.
    H. Kusuhara, T. Sekine, and N. Utusnomiya-Tate. Molecular cloning and characterization of a new multispecific organic anion transporter from rat brain. J. Biol. Chem. 274:13675-13680 (1999).Google Scholar
  15. 15.
    G. A. Kullak-Ublick, U. Beuers, and G. Paumgartner. Hepatobiliary transport. J. Hepatol. 32:3-18 (2000).Google Scholar
  16. 16.
    W. Sun, R. R. Wu, P. D. van Poelje, and M. D. Erion. Isolation of a family of organic anion transporters from human liver and kidney. Biochem. Biophys. Res. Commun. 283:417-422 (2001).Google Scholar
  17. 17.
    A. Enomoto, M. Takeda, M. Shimoda, S. Narikawa, Y. Kobayashi, T. Yamamoto, T. Sekine, S. H. Cha, T. Niwa, and H. Endou. Interaction of human organic anion transporters 2 and 4 with organic anion transport inhibitors. J. Pharmacol. Exp. Ther. 301: 797-802 (2002).Google Scholar
  18. 18.
    H. Kimura, M. Takeda, S. Narikawa, A. Enomoto, K. Ichida, and H. Endou. Human organic anion transporters and human organic cation transporters mediate renal transport of prostaglandins. J. Pharmacol. Exp. Ther. 301:293-298 (2002).Google Scholar
  19. 19.
    E. Babu, M. Takeda, S. Narikawa, Y. Kobayashi, T. Yamamoto, S. H. Cha, T. Sekine, D. Sakthisekaran, and H. Endou. Human organic anion transporters mediate the transport of tetracycline. Jpn. J. Pharmacol. 88:69-76 (2002).Google Scholar
  20. 20.
    S. Khamdang, M. Takeda, R. Noshiro, S. Narikawa, A. Enomoto, N. Anzai, P. Piyachaturawat, and H. Endou. Interactions of human organic anion transporters and human organic cation transporters with nonsteroidal anti-inflammatory drugs. J. Pharmacol. Exp. Ther. 303:534-539 (2002).Google Scholar
  21. 21.
    M. Takeda, S. Khamdang, S. Narikawa, H. Kimura, Y. Kobayashi, T. Yamamoto, S. H. Cha, T. Sekine, and H. Endou. Human organic anion transporters and human organic cation transporters mediate renal antiviral transport. J. Pharmacol. Exp. Ther. 300:918-924 (2002).Google Scholar
  22. 22.
    M. Takeda, S. Khamdang, S. Narikawa, H. Kimura, M. Hosoyamada, S. H. Cha, T. Sekine, and H. Endou. Characterization of methotrexate transport and its drug interactions with human organic anion transporters. J. Pharmacol. Exp. Ther. 302:666-671 (2002).Google Scholar
  23. 23.
    E. Babu, M. Takeda, S. Narikawa, Y. Kobayashi, A. Enomoto, A. Tojo, S. H. Cha, T. Sekine, D. Sakthisekaran, and H. Endou. Role of human organic anion transporter 4 in the transport of ochratoxin A. Biochim. Biophys. Acta 1590:64-75 (2002).Google Scholar
  24. 24.
    D. Grundemann, V. Gorboulev, S. Gambaryan, M. Veyhl, and H. Koepsell. Drug excretion mediated by a new prototype of polyspecific transporter. Nature 372:549-552 (1994).Google Scholar
  25. 25.
    L. Zhang, M. J. Dresser, A. T. Gray, S. C. Yost, S. Terashita, and K. M. Giacomini. Cloning and functional expression of a human liver organic cation transporter. Mol. Pharmacol. 51:913-921 (1997).Google Scholar
  26. 26.
    F. Meyer-Wentrup, U. Karbach, V. Gorboulev, P. Arndt, and H. Koepsell. Membrane localization of the electrogenic cation transporter rOCT1 in rat liver. Biochem. Biophys. Res. Commun.248:673-678 (1998).Google Scholar
  27. 27.
    M. Hayer-Zillgen, M. Brüss, and H. Bönisch. Expression and pharmacological profile of the human organic cation transporters hOCT1, hOCT2 and hOCT3. Br. J. Pharmacol. 136:829-836 (2002).Google Scholar
  28. 28.
    I. Tamai, H. Yabuuchi, J. Nezu, Y. Sai, A. Oku, M. Shimane, and A. Tsuji. Cloning and characterization of a novel human pH-dependent organic cation transporter, OCTN1. FEBS Lett. 419:107-111 (1997).Google Scholar
  29. 29.
    X. Wu, P. D. Prasad, F. H. Leibach, and V. Ganapathy. cDNA sequence, transport function, and genomic organization of human OCTN2, a new member of the organic cation transporter family. Biochem. Biophys. Res. Commun. 246:589-595 (1998).Google Scholar
  30. 30.
    P. Borst, R. Evers, and M. Kool, J. Wijnholds, The multidrug resistance protein family. Biochim. Biophys. Acta 146:347-357 (1999).Google Scholar
  31. 31.
    H. Roelofsen, M. Muller, and P. L. Jansen. Regulation of organic anion transport in the liver. Yale J. Biol. Med. 70:435-445 (1997).Google Scholar
  32. 32.
    M. J. Flens, G. J. Zaman, P. van der Valk, M. A. Izquierdo, A. B. Schroeijers, G. L. Scheffer, P. van der Groep, M. de Haas, C. J. Meijer, and R. J. Scheper. Tissue distribution of the multidrug resistance protein. Am. J. Pathol. 148:1237-1247 (1996).Google Scholar
  33. 33.
    D. W. Loe, R. G. Deeley, and S. P. Cole. Characterization of vincristine transport by the M(r) 190,000 multidrug resistance protein (MRP): evidence for cotransport with reduced glutathione. Cancer Res. 58:5130-5136 (1998).Google Scholar
  34. 34.
    T. Hirohashi, H. Suzuki, and Y. Sugiyama. Characterization of the transport properties of cloned rat multidrug resistanceassociated protein 3 (MRP3). J. Biol. Chem. 274:15181-15185 (1999).Google Scholar
  35. 35.
    T. Hirohashi, H. Suzuki, H. Takikawa, and Y. Sugiyama. ATPdependent transport of bile salts by rat multidrug resistanceassociated protein 3 (Mrp3). J. Biol. Chem. 275:2905-2910 (2000).Google Scholar
  36. 36.
    H. Xiong, K. C. Turner, E. S. Ward, P. L. Jansen, and K. L. Brouwer. Altered hepatobiliary disposition of acetaminophen glucuronide in isolated perfused livers from multidrug resistance-associated protein 2-deficient TR-rats. J. Pharmacol. Exp. Ther. 295:512-518 (2000).Google Scholar
  37. 37.
    K. Ogawa, H. Suzuki, T. Hirohashi, T. Ishikawa, P. J. Meier, K. Hirose, T. Akizawa, M. Yoshioka, and Y. Sugiyama. Characterization of inducible nature of MRP3 in rat liver. Am. J. Physiol. 278:G438-G446 (2000).Google Scholar
  38. 38.
    J. Konig, D. Rost, Y. Cui, and D. Keppler. Characterization of the human multidrug resistance protein isoform MRP3 localized to the basolateral hepatocyte membrane. Hepatology 29:1156-1163 (1999).Google Scholar
  39. 39.
    G. Reid, P. Wielinga, N. Zelcer, M. De Haas, L. Van Deemter, J. Wijnholds, J. Balzarini, and P. Borst. Characterization of the transport of nucleoside analog drugs by the human multidrug resistance proteins MRP4 and MRP5. Mol. Pharmacol. 63:1094-1103 (2003).Google Scholar
  40. 40.
    Z. S. Chen, K. Lee, and G. D. Kruh. Transport of cyclic nucleotides and estradiol 17-beta-D-glucuronide by multidrug resistance protein 4. Resistance to 6-mercaptopurine and 6-thioguanine. J. Biol. Chem. 276:33747-33754 (2001).Google Scholar
  41. 41.
    G. Jedlitschky, B. Burchell, and D. Keppler. The multidrug resistance protein 5 functions as an ATP-dependent export pump for cyclic nucleotides. J. Biol. Chem. 275:30069-30074 (2000).Google Scholar
  42. 42.
    Z. S. Chen, K. Lee, S. Walther, R. B. Raftogianis, M. Kuwano, H. Zeng, and G. D. Kruh. Analysis of methotrexate and folate transport by multidrug resistance protein 4 (ABCC4): MRP4 is a component of the methotrexate efflux system. Cancer Res. 62:3144-3150 (2002).Google Scholar
  43. 43.
    J. D. Schuetz, M. C. Connelly, D. Sun, S. G. Paibir, P. M. Flynn, R. V. Srinivas, A. Kumar, and A. Fridland. MRP4: A previously unidentified factor in resistance to nucleoside-based antiviral drugs. Nat. Med. 5:1048-1051 (1999).Google Scholar
  44. 44.
    N. Zelcer, G. Reid, P. Wielinga, A. Kuil, I. van der Heijden, J. D. Schuetz, and P. Borst. Steroid and bile acid conjugates are substrates of human multidrug-resistance protein (MRP) 4 (ATP-binding cassette C4). Biochem. J. 371:361-367 (2003).Google Scholar
  45. 45.
    E. G. Schuetz, S. Strom, K. Yasuda, V. Lecureur, M. Assem, C. Brimer, J. Lamba, R. B. Kim, V. Ramachandran, B. J. Komoroski, R. Venkataramanan, H. Cai, C. J. Sinal, F. J. Gonzalez, and J. D. Schuetz. Disrupted bile acid homeostasis reveals an unexpected interaction among nuclear hormone receptors, transporters, and cytochrome P450. J. Biol. Chem. 276:39411-39418 (2001).Google Scholar
  46. 46.
    J. Madon, B. Hagenbuch, L. Landmann, P. J. Meier, and B. Stieger. Transport function and hepatocellular localization of mrp6 in rat liver. Mol. Pharmacol. 57:634-641 (2000).Google Scholar
  47. 47.
    M. Kool, M. van der Linden, M. de Haas, F. Baas, and P. Borst. Expression of human MRP6, a homologue of the multidrug resistance protein gene MRP1, in tissues and cancer cells. Cancer Res. 59:175-182 (1999).Google Scholar
  48. 48.
    E. Hopper, M. G. Belinsky, H. Zeng, A. Tosolini, J. R. Testa, and G. D. Kruh. Analysis of the structure and expression pattern of MRP7 (ABCC10), a new member of the MRP subfamily. Cancer Lett. 162:181-191 (2001).Google Scholar
  49. 49.
    Z. S. Chen, E. Hopper-Borge, M. G. Belinsky, I. Shchaveleva, E. Kotova, and G. D. Kruh. Characterization of the transport properties of human multidrug resistance protein 7 (MRP7, ABCC10). Mol. Pharmacol. 63:351-358 (2003).Google Scholar
  50. 50.
    T. K. Bera, S. Lee, G. Salvatore, B. Lee, and I. Pastan. MRP8, a new member of ABC transporter superfamily, identified by EST database mining and gene prediction program, is highly expressed in breast cancer. Mol. Med. 7:509-516 (2001).Google Scholar
  51. 51.
    Y. Guo, E. Kotova, Z. S. Chen, K. Lee, E. Hopper-Borge, M. G. Belinsky, and G. D. Kruh. MRP8, ATP-binding cassette C11 (ABCC11), is a cyclic nucleotide efflux pump and a resistance factor for fluoropyrimidines 2_,3_-dideoxycytidine and 9_-(2_-phosphonylmethoxyethyl)adenine. J. Biol. Chem. 278:29509-29514 (2003).Google Scholar
  52. 52.
    S. C. Hyde, P. Emsley, M. J. Hartshorn, M. M. Mimmack, U. Gileadi, S. R. Pearce, M. P. Gallagher, D. R. Gill, R. E. Hubbard, and C. F. Higgins. Structural model of ATP-binding proteins associated with cystic fibrosis, multidrug resistance and bacterial transport. Nature 346:362-365 (1990).Google Scholar
  53. 53.
    T. Gerloff, B. Stieger, B. Hagenbuch, J. Madon, L. Landmann, J. Roth, A. F. Hofmann, and P. J. Meier. The sister of Pglycoprotein represents the canalicular bile salt export pump of mammalian liver. J. Biol. Chem. 273:10046-10050 (1998).Google Scholar
  54. 54.
    S. S. Strautnieks, L. N. Bull, A. S. Knisely, S. A. Kocoshis, N. Dahl, H. Arnell, E. Sokal, K. Dahan, S. Childs, V. Ling, M. S. Tanner, A. F. Kagalwalla, A. Nemeth, J. Pawlowska, A. Baker, G. Mieli-Vergani, N. B. Freimer, R. M. Gardiner, and R. J. Thompson. A gene encoding a liver-specific ABC transporter is mutated in progressive familial intrahepatic cholestasis. Nat. Genet. 20:233-238 (1998).Google Scholar
  55. 55.
    P. L. Jansen, S. S. Strautnieks, E. Jacquemin, M. Hadchouel, E. M. Sokal, G. J. Hooiveld, J. H. Koning, A. De Jager-Krikken, F. Kuipers, F. Stellaard, C. M. Bijleveld, A. Gouw, H. Van Goor, R. J. Thompson, and M. Muller. Hepatocanalicular bile salt export pump deficiency in patients with progressive familial intrahepatic cholestasis. Gastroenterology 117:1370-1379 (1999).Google Scholar
  56. 56.
    J. Konig, A. T. Nies, Y. Cui, I. Leier, and D. Keppler. Conjugate export pumps of the multidrug resistance protein (MRP) family: localization, substrate specificity, and MRP2-mediated drug resistance. Biochim. Biophys. Acta 1461:377-394 (1999).Google Scholar
  57. 57.
    P. L. M. Jansen, G. M. Groothuis, W. H. Peters, and D. K. F. Meijer. Selective hepatobiliary transport defect for organic anions and neutral steroids in mutant rats with hereditaryconjugated hyperbilirubinemia. Hepatology 7:71-76 (1987).Google Scholar
  58. 58.
    C. C. Paulusma, P. J. Bosma, G. J. R. Zaman, C. T. M. Bakker, M. Otter, G. L. Scheffer, R. J. Scheper, P. Borst, and R. P. J. Oude Elferink. Congenital jaundice in rats with a mutation in a multidrug resistance-associated protein gene. Science 271:1126-1128 (1996).Google Scholar
  59. 59.
    Y. Ito, H. Suzuki, T. Hirohashi, K. Kume, T. Shimizu, and Y. Sugiyama. Molecular cloning of canalicular multispecific organic anion transporter defective in EHBR. Am. J. Pathol. 272:G16-G22 (1997).Google Scholar
  60. 60.
    T. Hirohashi, H. Suzuki, K. Ito, K. Ogawa, K. Kume, T. Shimizu, and Y. Sugiyama. Hepatic expression of multidrug resistanceassociated protein-like proteins maintained in eisai hyperbilirubinemic rats. Mol. Pharmacol. 53:1068-1075 (1998).Google Scholar
  61. 61.
    I. Pastan and M. Gottesman. Multiple-drug resistance in human cancer. N. Engl. J. Med. 316:1388-1393 (1987).Google Scholar
  62. 62.
    R. P. J. Oude Elferink, D. K. F. Meijer, F. Kuipers, P. L. M. Jansen, A. K. Groen, and G. M. M. Groothuis. Hepatobiliary secretion of organic compounds: molecular mechanisms of membrane transport. Biochim. Biophys. Acta 1241:215-268 (1995).Google Scholar
  63. 63.
    D. Schmid, G. Ecker, S. Kopp, M. Hitzler, and P. Chiba. Structure-activity relationship studies of propafenone analogs based on P-glycoprotein ATPase activity measurements. Biochem. Pharmacol. 58:1447-1456 (1999).Google Scholar
  64. 64.
    J. W. Smit, A. H. Schinkel, M. Muller, B. Weert, and D. K. Meijer. Contribution of the murine mdr1a P-glycoprotein to hepatobiliary and intestinal elimination of cationic drugs as measured in mice with an mdr1a gene disruption. Hepatology 27:1056-1063 (1998).Google Scholar
  65. 65.
    J. W. Smit, B. Weert, A. H. Schinkel, and D. K. Meijer. Heterologous expression of various P-glycoproteins in polarized epithelial cells induces directional transport of small (type 1) and bulky (type 2) cationic drugs. J. Pharmacol. Exp. Ther. 286:321-327 (1998).Google Scholar
  66. 66.
    C. J. Matheny, M. W. Lamb, K. L. R. Brouwer, and G. M. Pollack. Pharmacokinetic and pharmacodynamic implications of Pglycoprotein modulation. Pharmacotherapy 21:778-796 (2001).Google Scholar
  67. 67.
    S. Ekins, R. B. Kim, B. F. Leake, A. H. Dantzig, E. G. Schuetz, L. B. Lan, K. Yasuda, R. L. Shepard, M. A. Winter, J. D. Schuetz, J. H. Wikel, and S. A. Wrighton. Application of threedimensional quantitative structure-activity relationships of Pglycoprotein inhibitors and substrates. Mol. Pharmacol. 61:974-981 (2002).Google Scholar
  68. 68.
    S. Ekins, R. B. Kim, B. F. Leake, A. H. Dantzig, E. G. Schuetz, L. B. Lan, K. Yasuda, R. L. Shepard, M. A. Winter, J. D. Schuetz, J. H. Wikel, and S. A. Wrighton. Three-dimensional quantitative structure-activity relationships of inhibitors of Pglycoprotein. Mol. Pharmacol. 61:964-973 (2002).Google Scholar
  69. 69.
    T. R. Stouch and O. Gudmundsson. Progress in understanding the structure-activity relationships of P-glycoprotein. Adv. Drug Deliv. Rev. 54:315-328 (2002).Google Scholar
  70. 70.
    Y. M. Lee, I. S. Song, S. G. Kim, M. G. Lee, S. J. Chung, and C. K. Shim. The suppressed expression and functional activity of hepatic P-glycoprotein in rats with protein-calorie malnutrition. J. Pharm. Sci. 92:1323-1330 (2003).Google Scholar
  71. 71.
    V. A. Patel, M. J. Dunn, and A. Sorokin. Regulation of MDR-1 (P-glycoprotein) by cyclooxygenase-2. J. Biol. Chem. 277:38915-38920 (2002).Google Scholar
  72. 72.
    M. Sukhai and M. Piquette-Miller. Regulation of the multidrug resistance genes by stress signals. J. Pharm. Sci. 3:268-280 (2000).Google Scholar
  73. 73.
    M. P. McRae, K. L. Brouwer, and A. D. Kashuba. Cytokine regulation of P-glycoprotein. Drug Metab. Rev. 35:19-33 (2003).Google Scholar
  74. 74.
    P. P. Annaert, R. Z. Turncliff, C. L. Booth, D. R. Thakker, and K. L. Brouwer. P-glycoprotein-mediated in vitro biliary excretion in sandwich-cultured rat hepatocytes. Drug Metab. Dispos. 29:1277-1283 (2001).Google Scholar
  75. 75.
    A. J. Smith, A. van Helvoort, G. van Meer, K. Szabo, E. Welker, G. Szakacs, A. Varadi, B. Sarkadi, and P. Borst. MDR3 Pglycoprotein, a phosphatidylcholine translocase, transports several cytotoxic drugs and directly interacts with drugs as judged by interference with nucleotide trapping. J. Biol. Chem. 275: 23530-23539 (2000).Google Scholar
  76. 76.
    L. A. Doyle, W. Yang, L. V. Abruzzo, T. Krogmann, Y. Gao, A. K. Rishi, and D. D. Ross. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc. Natl. Acad. Sci. USA 95:15665-15670 (1998).Google Scholar
  77. 77.
    M. Suzuki, H. Suzuki, Y. Sugimoto, and Y. Sugiyama. ABCG2 transports sulfated conjugates of steroids and xenobiotics. J. Biol. Chem. 278:22644-22649 (2003).Google Scholar
  78. 78.
    M. Maliepaard, G. L. Scheffer, I. F. Faneyte, M. A. van Gastelen, A. C. L. M. Pijnenborg, A. H. Schinkel, M. J. van De Vijver, R. J. Scheper, and J. H. M. Schellens. Subcellular localization and distribution of the breast cancer resistance protein transporter in normal human tissues. Cancer Res. 61:3458-3464 (2001).Google Scholar
  79. 79.
    D. Houssin, M. Capron, C. Celier, T. Cresteil, F. Demaugre, and P. Beaune. Evaluation of isolated human hepatocytes. Life Sci.33:1805-1809 (1983).Google Scholar
  80. 80.
    L. B. Tee, T. Seddon, A. R. Boobis, and D. S. Davies. Drug metabolising activity of freshly isolated human hepatocytes. Br. J. Clin. Pharmacol. 19:279-294 (1985).Google Scholar
  81. 81.
    G. M. Groothuis, C. E. Hulstaert, D. Kalicharan, and M. J. Hardonk. Plasma membrane specialization and intracellular polarity of freshly isolated rat hepatocytes. Eur. J. Cell Biol. 26: 43-51 (1981).Google Scholar
  82. 82.
    G. Ihrke, E. B. Neufeld, T. Meads, M. R. Shanks, D. Cassio, M. Laurent, T. A. Schroer, R. E. Pagano, and A. L. Hubbard. WIF-B cells: an in vitro model for studies of hepatocyte polarity. J. Cell Biol. 123:1761-1775 (1993).Google Scholar
  83. 83.
    Y. Sai, A. T. Nies, and I. M. Arias. Bile acid secretion and direct targeting of mdr1-green fluorescent protein from golgi to the canalicular membrane in polarized WIF-B cells. J. Cell Sci. 112: 4535-4545 (1999).Google Scholar
  84. 84.
    M. M. Zegers and D. Hoekstra. Mechanisms and functional features of polarized membrane traffic in epithelial and hepatic cells. Biochem. J. 336:257-269 (1998).Google Scholar
  85. 85.
    J. A. Dranoff, M. McClure, A. D. Burgstahler, L. A. Denson, A. R. Crawford, J. M. Crawford, S. J. Karpen, and M. H. Nathanson. Short-term regulation of bile acid uptake by microfilament-dependent translocation of rat ntcp to the plasma membrane. Hepatology 30:223-229 (1999).Google Scholar
  86. 86.
    J. H. Fentem, B. Foster, C. O. Mills, R. Coleman, and J. K. Chipman. Biliary excretion of fluorescent cholephiles in hepatocyte couplets: an in vitro model for hepatobiliary and hepatotoxicity studies. Toxicol. in Vitro 4:452-457 (1990).Google Scholar
  87. 87.
    J. Graf and J. L. Boyer. The use of isolated rat hepatocyte couplets in hepatobiliary physiology. J. Hepatol. 10:387-394 (1990).Google Scholar
  88. 88.
    C. O. Mills, P. Milkiewicz, M. Muller, M. G. Roma, R. Havinga, R. Coleman, F. Kuipers, P. L. Jansen, and E. Elias. Different pathways of canalicular secretion of sulfated and non-sulfated fluorescent bile acids: a study in isolated hepatocyte couplets and TR-rats. J. Hepatol. 31:678-684 (1999).Google Scholar
  89. 89.
    G. M. Groothuis and D. K. Meijer. Drug traffic in the hepatobiliary system. J. Hepatol. 24:3-28 (1996).Google Scholar
  90. 90.
    E. L. LeCluyse, P. L. Bullock, and A. Parkinson. Strategies for restoration and maintenance of normal hepatic structure and function in long-term cultures of rat hepatocytes. Adv. Drug Deliv. Rev. 22:133-186 (1996).Google Scholar
  91. 91.
    X. Liu, E. L. LeCluyse, K. R. Brouwer, R. M. Lightfoot, J. I. Lee, and K. L. Brouwer. Use of Ca2+ modulation to evaluate biliary excretion in sandwich-cultured rat hepatocytes. J. Pharmacol. Exp. Ther. 289:1592-1599 (1999).Google Scholar
  92. 92.
    X. Liu, J. P. Chism, E. L. LeCluyse, K. R. Brouwer, and K. L. Brouwer. Correlation of biliary excretion in sandwich-cultured rat hepatocytes and in vivo in rats. Drug Metab. Dispos. 27:637-644 (1999).Google Scholar
  93. 93.
    X. Liu, E. L. LeCluyse, K. R. Brouwer, L. S. Gan, J. J. Lemasters, B. Stieger, P. J. Meier, and K. L. Brouwer. Biliary excretion in primary rat hepatocytes cultured in a collagen-sandwich configuration. Am. J. Physiol. 277:G12-G21 (1999).Google Scholar
  94. 94.
    B. L. Blitzer and C. B. Donovan. A new method for the rapid isolation of basolateral plasma membrane vesicles from rat liver. Characterization, validation, and bile acid transport studies. J. Biol. Chem. 259:9295-9301 (1984).Google Scholar
  95. 95.
    P. J. Meier, A. St Meier-Abt, C. Barrett, and J. L. Boyer. Mechanisms of taurocholate transport in canalicular and basolateral rat liver plasma membrane vesicles. Evidence for an electrogenic canalicular organic anion carrier. J. Biol. Chem. 259: 10614-10622 (1984).Google Scholar
  96. 96.
    D. A. Novak, F. C. Ryckman, and F. J. Suchy. Taurocholate transport by basolateral plasma membrane vesicles isolated from human liver. Hepatology 10:447-453 (1989).Google Scholar
  97. 97.
    H. Wolters, M. Spiering, A. Gerding, M. J. Slooff, F. Kuipers, M. J. Hardonk, and R. J. Vonk. Isolation and characterization of canalicular and basolateral plasma membrane fractions from human liver. Biochim. Biophys. Acta 1069:61-69 (1991).Google Scholar
  98. 98.
    H. Ishizuka, K. Konno, T. Shiina, H. Naganuma, K. Nishimura, K. Ito, H. Suzuki, and Y. Sugiyama. Species differences in the transport activity for organic anions across the bile canalicular membrane. J. Pharmacol. Exp. Ther. 290:1324-1330 (1999).Google Scholar
  99. 99.
    M. Sasaki, H. Suzuki, K. Ito, T. Abe, and Y. Sugiyama. Transcellular transport of organic anions across a double-transfected Madin-Darby canine kidney II cell monolayer expressing both human organic anion-transporting polypeptide (OATP2/ SLC21A6) and Multidrug resistance-associated protein 2 (MRP2/ABCC2). J. Biol. Chem. 277:6497-6503 (2002).Google Scholar
  100. 100.
    Y. Cui, J. Konig, and D. Keppler. Vectorial transport by doubletransfected cells expressing the human uptake transporter SLC21A8 and the apical export pump ABCC2. Mol. Pharmacol. 60:934-943 (2001).Google Scholar
  101. 101.
    Y. Cui, J. Konig, J. K. Buchholz, H. Spring, I. Leier, and D. Keppler. Drug resistance and ATP-dependent conjugate transport mediated by the apical multidrug resistance protein, MRP2, permanently expressed in human and canine cells. Mol. Pharmacol. 55:929-937 (1999).Google Scholar
  102. 102.
    X. Tian, P. Zhang, and K. L. Brouwer. Modulation of multidrug resistance-associated proteins 2 and 3 expression and function with small interfering RNA in sandwich-cultured rat hepatocytes. Mol. Pharmacol. (2004, in review).Google Scholar
  103. 103.
    M. Muller. Transcriptional control of hepatocanalicular transporter gene expression. Semin. Liver Dis. 20:323-337 (2000).Google Scholar
  104. 104.
    L. A. Denson, E. Sturm, W. Echevarria, T. L. Zimmerman, M. Makishima, D. J. Mangelsdorf, and S. J. Karpen. The orphan nuclear receptor, shp, mediates bile acid-induced inhibition of the rat bile acid transporter, ntcp. Gastroenterology 121:140-147 (2001).Google Scholar
  105. 105.
    L. A. Denson, K. L. Auld, D. S. Schiek, M. H. McClure, D. J. Mangelsdorf, and S. J. Karpen. Interleukin-1beta suppresses retinoid transactivation of two hepatic transporter genes involved in bile formation. J. Biol. Chem. 275:8835-8843 (2000).Google Scholar
  106. 106.
    D. Jung, M. Podvinec, U. A. Meyer, D. J. Mangelsdorf, M. Fried, P. J. Meier, and G. A. Kullak-Ublick. Human organic anion transporting polypeptide 8 promoter is transactivated by the farnesoid X receptor/bile acid receptor. Gastroenterology 122:1954-1966 (2002).Google Scholar
  107. 107.
    J. L. Staudinger, A. Madan, K. M. Carol, and A. Parkinson. Regulation of drug transporter gene expression by nuclear receptors. Drug Metab. Dispos. 31:523-527 (2003).Google Scholar
  108. 108.
    H. Xiong, K. Yoshinari, K. L. Brouwer, and M. Negishi. Role of constitutive androstane receptor in the in vivo induction of Mrp3 and CYP2B1/2 by phenobarbital. Drug Metab. Dispos. 30:918-923 (2002).Google Scholar
  109. 109.
    M. Ananthanarayanan, N. Balasubramanian, M. Makishima, D. J. Mangelsdorf, and F. J. Suchy. Human bile salt export pump promoter is transactivated by the farnesoid X receptor/bile acid receptor. J. Biol. Chem. 276:28857-28865 (2001).Google Scholar
  110. 110.
    H. M. Kauffmann, S. Pfannschmidt, H. Zöller, A. Benz, B. Vorderstemann, J. I. Webster, and D. Schrenk. Influence of redox-active compounds and PXR-activators on human MRP1 and MRP2 gene expression. Toxicology 171:137-146 (2002).Google Scholar
  111. 111.
    H. R. Kast, B. Goodwin, P. T. Tarr, S. A. Jones, A. M. Anisfeld, C. M. Stoltz, P. Tontonoz, S. Kliewer, T. M. Willson, and P. A. Edwards. Regulation of multidrug resistance-associated protein 2 (ABCC2) by the nuclear receptors pregnane X receptor, farnesoid X-activated receptor, and constitutive androstane receptor. J. Biol. Chem. 277:2908-2915 (2002).Google Scholar
  112. 112.
    S. A. Kliewer, J. T. Moore, L. Wade, J. L. Staudinger, M. A. Watson, S. A. Jones, D. D. McKee, B. B. Oliver, T. M. Willson, R. H. Zetterstrom, T. Perlmann, and J. M. Lehmann. An orphan nuclear receptor activated by pregnanes defines a novel steroid signaling pathway. Cell 92:73-82 (1998).Google Scholar
  113. 113.
    A. Geick, M. Eichelbaum, and O. Burk. Nuclear receptor response elements mediate induction of intestinal MDR1 by rifampin. J. Biol. Chem. 276:14581-14587 (2001).Google Scholar
  114. 114.
    T. W. Synold, I. Dussault, and B. M. Forman. The orphan nuclear receptor SXR coordinately regulates drug metabolism and efflux. Nat. Med. 7:584-590 (2001).Google Scholar
  115. 115.
    T. Kok, V. W. Bloks, H. Wolters, R. Havinga, P. L. Jansen, B. Staels, and F. Kuipers. Peroxisome proliferator-activated receptor _ (PPAR_)-mediated regulation of multidrug resistance 2 (Mdr2) expression and function in mice. Biochem. J. 369:539-547 (2003).Google Scholar
  116. 116.
    G. A. Kullak-Ublick and M. B. Becker. Regulation of drug and bile salt transporters in liver and intestine. Drug Metab. Rev. 35:305-317 (2003).Google Scholar
  117. 117.
    J. L. Boyer and C. J. Soroka. Vesicle targeting to the apical domain regulates bile excretory function in isolated rat hepatocyte couplets. Gastroenterology 109:1600-1611 (1995).Google Scholar
  118. 118.
    S. Mukhopadhayay, M. Ananthanarayanan, B. Stieger, P. J. Meier, F. J. Suchy, and M. S. Anwer. cAMP increases liver Na+-taurocholate cotransport by translocation transporter to plasma membranes. Am. J. Physiol. 273:G842-G848 (1997).Google Scholar
  119. 119.
    H. Kipp and I. M. Arias. Intracellular trafficking and regulation of canalicular ATP-binding cassette transporters. Semin. Liver Dis. 20:339-351 (2000).Google Scholar
  120. 120.
    A. M. Durand-Schneider, C. T. M. Bakker, H. Roelofsen, E. Middelkoop, R. Ottenhoff, M. Heijn, and P. L. M. Jansen. Microtubule disruption interferes with the structural and functional integrity of the apical pole in primary cultures of rat hepatocytes. Eur. J. Cell Biol. 56:260-268 (1991).Google Scholar
  121. 121.
    R. P. J. Oude Elferink, C. T. M. Bakker, H. Roelofsen, E. Middelkoop, R. Ottenhoff, M. Heijn, and P. L. M. Jansen. Accumulation of organic anion in intracellular vesicles of cultured rat hepatocytes is mediated by the canalicular multispecific organic anion transporter. Hepatology 17:434-444 (1993).Google Scholar
  122. 122.
    H. Roelofsen, C. J. Soroka, D. Keppler, and J. L. Boyer. Cyclic AMP stimulates sorting of the canalicular organic anion transporter (Mrp2/cMoat) to the apical domain in hepatocyte couplets. J. Cell Sci. 111:1137-1145 (1998).Google Scholar
  123. 123.
    R. Kubitz, D. D'Urso, D. Keppler, and D. Haussinger. Osmodependent dynamic localization of the multidrug resistance protein 2 in the rat hepatocyte canalicular membrane. Gastroenterology 113:1438-1442 (1997).Google Scholar
  124. 124.
    Z. Gatmaitan, A. T. Nies, and I. M. Arias. Regulation and translocation of ATP-dependent apical membrane proteins in rat liver. Am. J. Pathol. 35:G1041-G1049 (1997).Google Scholar
  125. 125.
    J. S. Glavy, S. M. Wu, P. J. Wang, G. A. Orr, and A. W. Wolkoff. Down-regulation by extracellular ATP of rat hepatocyte organic anion transport is mediated by serine phosphorylation of oatp1. J. Biol. Chem. 275:1479-1484 (2000).Google Scholar
  126. 126.
    Y. Shitara, T. Itoh, H. Sato, A. P. Li, and Y. Sugiyama. Inhibition of transporter-mediated hepatic uptake as a mechanism for drug-drug interaction between cerivastatin and cyclosporin A. J. Pharmacol. Exp. Ther. 304:610-616 (2003).Google Scholar
  127. 127.
    W. Muck, I. Mai, L. Fritsche, K. Ochmann, G. Rohde, S. Unger, A. Johne, S. Bauer, K. Budde, I. Roots, and H. H. Neumayer. and J. Kuhlmann. Increase in cerivastatin systemic exposure after single and multiple dosing in cyclosporine-treated kidney transplant recipients. Clin. Pharmacol. Ther. 65:251-261 (1999).Google Scholar
  128. 128.
    B. Angelin, A. Arvidsson, R. Dahlqvist, A. Hedman, and K. Schenck-Gustafsson. Quinidine reduces biliary clearance of digoxin in man. Eur. J. Clin. Invest. 17:262-265 (1987).Google Scholar
  129. 129.
    M. Horio, M. M. Gottesman, and I. Pastan. ATP-dependent transport of vinblastine in vesicles from human multidrugresistant cells. Proc. Natl. Acad. Sci. USA 85:3580-3584 (1988).Google Scholar
  130. 130.
    C. L. Booth, K. R. Brouwer, and K. L. Brouwer. Effect of multidrug resistance modulators on the hepatobiliary disposition of doxorubicin in the isolated perfused rat liver. Cancer Res. 58: 3641-3648 (1998).Google Scholar
  131. 131.
    J. van Asperen, O. van Tellingen, and J. H. Beijnen. The role of mdr1a P-glycoprotein in the biliary and intestinal secretion of doxorubicin and vinblastine in mice. Drug Metab. Dispos. 28: 264-267 (2000).Google Scholar
  132. 132.
    J. Riley, J. Styles, R. D. Verschoyle, L. A. Stanley, I. N. White, and T. W. Gant. Association of tamoxifen biliary excretion rate with prior tamoxifen exposure and increased mdr1b expression. Biochem. Pharmacol. 60:233-239 (2000).Google Scholar
  133. 133.
    K. Fattinger, C. Funk, M. Pantze, C. Weber, J. Reichen, B. Stieger, and P. J. Meier. The endothelin antagonist bosentan inhibits the canalicular bile salt export pump: a potential mechanism for hepatic adverse reactions. Clin. Pharmacol. Ther. 69: 223-231 (2001).Google Scholar
  134. 134.
    V. J. Wacher, C. Y. Wu, and L. Z. Benet. Overlapping substrate specificities and tissue distribution of cytochrome P450 3A and P-glycoprotein: implications for drug delivery and activity in cancer chemotherapy. Mol. Carcinog. 13:129-134 (1995).Google Scholar
  135. 135.
    L. Huang, S. A. Wring, J. L. Woolley, K. R. Brouwer, C. Serabjit-Singh, and J. W. Polli. Induction of P-glycoprotein and cytochrome P450 3A by HIV protease inhibitors. Drug Metab. Dispos. 29:754-760 (2001).Google Scholar
  136. 136.
    E. G. Schuetz, W. T. Beck, and J. D. Schuetz. Modulators and substrates of P-glycoprotein and cytochrome P4503A coordinately up-regulate these proteins in human colon carcinoma cells. Mol. Pharmacol. 49:311-318 (1996).Google Scholar
  137. 137.
    E. G. Schuetz, A. H. Schinkel, M. V. Relling, and J. D. Schuetz. P-glycoprotein: a major determinant of rifampicin-inducible expression of cytochrome P4503A in mice and humans. Proc. Natl. Acad. Sci. USA 93:4001-4005 (1996).Google Scholar
  138. 138.
    L. Salphati and L. Z. Benet. Modulation of P-glycoprotein expression by cytochrome P450 3A inducers in male and female rat livers. Biochem. Pharmacol. 55:387-395 (1998).Google Scholar
  139. 139.
    K. Yasuda, L. B. Lan, D. Sanglard, K. Furuya, J. D. Schuetz, and E. G. Schuetz. Interaction of cytochrome P450 3A inhibitors with P-glycoprotein. J. Pharmacol. Exp. Ther. 303:323-332 (2002).Google Scholar
  140. 140.
    C. Y. Wu and L. Z. Benet. Disposition of tacrolimus in isolated perfused rat liver: influence of troleandomycin, cyclosporine, and gg918. Drug Metab. Dispos. 31:1292-1295 (2003).Google Scholar
  141. 141.
    E. G. Schuetz, D. R. Umbenhauer, K. Yasuda, C. Brimer, L. Nguyen, M. V. Relling, J. D. Schuetz, and A. H. Schinkel. Altered expression of hepatic cytochromes P-450 in mice deficient in one or more mdr1 genes. Mol. Pharmacol. 57:188-197 (2000).Google Scholar
  142. 142.
    L. B. Lan, J. T. Dalton, and E. G. Schuetz. Mdr1 limits CYP3A metabolism in vivo. Mol. Pharmacol. 58:863-869 (2000).Google Scholar
  143. 143.
    J. M. Lehmann, D. D. McKee, M. A. Watson, T. M. Willson, J. T. Moore, and S. A. Kliewer. The human orphan nuclear receptor PXR is activated by compounds that regulate CYP3A4 gene expression and cause drug interactions. J. Clin. Invest. 102: 1016-1023 (1998).Google Scholar
  144. 144.
    A. Iida, S. Saito, A. Sekine, C. Mishima, K. Kondo, Y. Kitamura, S. Harigae, S. Osawa, and Y. Nakamura. Catalog of 258 single-nucleotide polymorphisms (SNPs) in genes encoding three organic anion transporters, three organic aniontransporting polypeptides, and three NADH:ubiquinone oxidoreductase flavoproteins. J. Hum. Genet. 46:668-683 (2001).Google Scholar
  145. 145.
    T. Nozawa, M. Nakajima, I. Tamai, K. Noda, J. Nezu, Y. Sai, A. Tsuji, and T. Yokoi. Genetic polymorphisms of human organic anion transporters OATP-C (SLC21A6) and OATP-B (SLC21A9): allele frequencies in the Japanese population and functional analysis. J. Pharmacol. Exp. Ther. 302:804-813 (2002).Google Scholar
  146. 146.
    C. Michalski, Y. Cui, A. T. Nies, A. K. Nuessler, P. Neuhaus, U. M. Zanger, K. Klein, M. Eichelbaum, D. Keppler, and J. Konig. A naturally occurring mutation in the SLC21A6 gene causing impaired membrane localization of the hepatocyte uptake transporter. J. Biol. Chem. 277:43058-43063 (2002).Google Scholar
  147. 147.
    R. G. Tirona, B. F. Leake, G. Merino, and R. B. Kim. Polymorphisms in OATP-C: identification of multiple allelic variants associated with altered transport activity among European-and African-Americans. J. Biol. Chem. 276:35669-35675 (2001).Google Scholar
  148. 148.
    Y. Nishizato, I. Ieiri, H. Suzuki, M. Kimura, K. Kawabata, T. Hirota, H. Takane, S. Irie, H. Kusuhara, Y. Urasaki, A. Urae, S. Higuchi, K. Otsubo, and Y. Sugiyama. Polymorphisms of OATP-C (SLC21A6) and OAT3 (SLC22A8) genes: consequences for pravastatin pharmacokinetics. Clin. Pharmacol. Ther. 73:554-565 (2003).Google Scholar
  149. 149.
    S. Conrad, H. M. Kauffmann, K. Ito, E. M. Leslie, R. G. Deeley, D. Schrenk, and S. P. C. Cole. A naturally occurring mutation in MRP1 results in a selective decrease in organic anion transport and in increased doxorubicin resistance. Pharmacogenetics 12: 321-330 (2002).Google Scholar
  150. 150.
    S. Ito, I. Ieiri, M. Tanabe, A. Suzuki, S. Higuchi, and K. Otsubo. Polymorphism of the ABC transporter genes, MDR1, MRP1 and MRP2/cMOAT, in healthy Japanese subjects. Pharmacogenetics 11:175-184 (2001).Google Scholar
  151. 151.
    D. P. Germain, V. Remones, J. Perdu, and X. Jeunemaitre. Identification of two polymorphisms (c189G>C; c190T>C) in exon 2 of the human MRP6 gene (ABCC6) by screening of Pseudoxanthoma elasticum patients: possible sequence correction? Hum. Mutat. 16:449 (2000).Google Scholar
  152. 152.
    I. N. Dubin and F. B. Johnson. Chronic idiopathic jaundice with unidentified pigment in liver cells. Medicine (Baltimore) 33:155-179 (1954).Google Scholar
  153. 153.
    J. Kartenbeck, U. Leuschner, R. Mayer, and D. Keppler. Absence of the canalicular isoform of the MRP gene-encoded conjugate export pump from the hepatocytes in Dubin-Johnson syndrome. Hepatology 23:1061-1066 (1996).Google Scholar
  154. 154.
    M. Wada, S. Toh, K. Taniguchi, T. Nakamura, T. Uchiumi, K. Kohno, I. Yoshida, A. Kimura, S. Sakisaka, Y. Adachi, and M. Kuwano. Mutations in the canalicular multispecific organic anion transporter (cMOAT) gene, a novel ABC transporter, in patients with hyperbilirubinemia II/Dubin-Johnson syndrome. Hum. Mol. Genet. 7:203-207 (1998).Google Scholar
  155. 155.
    V. Keitel, J. Kartenbeck, A. T. Nies, H. Spring, M. Brom, and D. Keppler. Impaired protein maturation of the conjugate export pump multidrug resistance protein 2 as a consequence of a deletion mutation in Dubin-Johnson syndrome. Hepatology 32: 1317-1328 (2000).Google Scholar
  156. 156.
    K. Hashimoto, T. Uchiumi, T. Konno, T. Ebihara, T. Nakamura, M. Wada, S. Sakisaka, F. Maniwa, T. Amachi, K. Ueda, and M. Kuwano. Trafficking and functional defects by mutations of the ATP-binding domains in MRP2 in patients with Dubin-Johnson syndrome. Hepatology 36:1236-1245 (2002).Google Scholar
  157. 157.
    M. Schwab, M. Eichelbaum, and M. F. Fromm. Genetic polymorphisms of the human MDR1 drug transporter. Annu. Rev. Pharmacol. Toxicol. 43:285-307 (2003).Google Scholar
  158. 158.
    M. F. Fromm. The influence of MDR1 polymorphisms on Pglycoprotein expression and function in humans. Adv. Drug Deliv. Rev. 54:1295-1310 (2002).Google Scholar
  159. 159.
    A. Sparreboom, R. Danesi, Y. Ando, J. Chan, and W. D. Figg. Pharmacogenomics of ABC transporters and its role in cancer chemotherapy. Drug Resist. Updat 6:71-84 (2003).Google Scholar
  160. 160.
    S. Hoffmeyer, O. Burk, O. von Richter, H. P. Arnold, J. Brockmoller, A. Johne, I. Cascorbi, T. Gerloff, I. Roots, M. Eichelbaum, and U. Brinkmann. Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc. Natl. Acad. Sci. USA 97:3473-3478 (2000).Google Scholar
  161. 161.
    T. Sakaeda, T. Nakamura, M. Horinouchi, M. Kakumoto, N. Ohmoto, T. Sakai, Y. Morita, T. Tamura, N. Aoyama, M. Hirai, M. Kasuga, and K. Okumura. MDR1 genotype-related pharmacokinetics of digoxin after single oral administration in healthy Japanese subjects. Pharm. Res. 18:1400-1404 (2001).Google Scholar
  162. 162.
    K. Tang, S. M. Ngoi, P. C. Gwee, J. M. Z. Chua, E. J. D. Lee, S. S. Chong, and C. G. L. Lee. Distinct haplotype profiles and strong linkage disequilibrium at the MDR1 multidrug transporter gene locus in three ethnic Asian populations. Pharmacogenetics 12:437-450 (2002).Google Scholar
  163. 163.
    C. Kimchi-Sarfaty, J. J. Gribar, and M. M. Gottesman. Functional characterization of coding polymorphisms in the human MDR1 gene using a vaccinia virus expression system. Mol. Pharmacol. 62:1-6 (2002).Google Scholar
  164. 164.
    H. Mitomo, R. Kato, A. Ito, S. Kasamatsu, Y. Ikegami, I. Kii, A. Kudo, E. Kobatake, Y. Sumino, and T. Ishikawa. A functional study on polymorphism of the ATP-binding cassette transporter ABCG2: critical role of arginine-482 in methotrexate transport. Biochem. J. 373:767-774 (2003).Google Scholar
  165. 165.
    A. H. Schinkel, J. J. Smit, O. van Tellingen, J. H. Beijnen, E. Wagenaar, L. van Deemter, C. A. Mol, M. A. van der Valk, E. C. Robanus-Maandag, H. P. te Riele, A. J. M. Berns, and P. Borst. Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell 77:491-502 (1994).Google Scholar
  166. 166.
    M. Nadai, T. Hasegawa, L. Wang, O. Tagaya, and T. Nabeshima. Alterations in the pharmacokinetics and protein binding of enprofylline in Eisai hyperbilirubinemic rats. Drug Metab. Dispos. 22:561-565 (1994).Google Scholar
  167. 167.
    J. Wijnholds, C. A. Mol, G. L. Scheffer, R. J. Scheper, and P. Borst. Multidrug resistance protein 5, a candidate multispecific organic anion transporter. Proc. Am. Assoc. Cancer Res. 40:315 (1999).Google Scholar
  168. 168.
    J. Wijnholds, R. Evers, M. R. van Leusden, C. A. Mol, G. J. Zaman, U. Mayer, J. H. Beijnen, M. van der Valk, P. Krimpen-fort, and P. Borst. Increased sensitivity to anticancer drugs and decreased inflammatory response in mice lacking the multidrug resistance-associated protein. Nat. Med. 3:1275-1279 (1997).Google Scholar
  169. 169.
    A. Lorico, G. Rappa, R. A. Finch, D. Yang, R. A. Flavell, and A. C. Sartorelli. Disruption of the murine MRP (multidrug resistance protein) gene leads to increased sensitivity to etoposide (VP-16) and increased levels of glutathione. Cancer Res. 57: 5238-5242 (1997).Google Scholar
  170. 170.
    M. Cvetkovic, B. Leake, M. F. Fromm, G. R. Wilkinson, and R. B. Kim. OATP and P-glycoprotein transporters mediate the cellular uptake and excretion of fexofenadine. Drug Metab. Dispos. 27:866-871 (1999).Google Scholar
  171. 171.
    Y. Cui, J. Konig, I. Leier, U. Buchholz, and D. Keppler. Hepatic uptake of bilirubin and its conjugates by the human organic anion transporter SLC21A6. J. Biol. Chem. 276:9626-9630 (2001).Google Scholar
  172. 172.
    T. Abe, M. Kakyo, T. Tokui, R. Nakagomi, T. Nishio, D. Nakai, H. Nomura, M. Unno, M. Suzuki, T. Naitoh, S. Matsuno, and H. Yawo. Identification of a novel gene family encoding human liver-specific organic anion transporter LST-1. J. Biol. Chem. 274:17159-17163 (1999).Google Scholar
  173. 173.
    D. Nakai, R. Nakagomi, Y. Furuta, T. Tokui, T. Abe, T. Ikeda, and K. Nishimura. Human liver-specific organic anion transporter, LST-1, mediates uptake of pravastatin by human hepatocytes. J. Pharmacol. Exp. Ther. 297:861-867 (2001).Google Scholar
  174. 174.
    S. R. Vavricka, J. Van Montfoort, H. R. Ha, P. J. Meier, and K. Fattinger. Interactions of rifamycin SV and rifampicin with organic anion uptake systems of human liver. Hepatology 36:164-172 (2002).Google Scholar
  175. 175.
    H. Hasannejad, M. Takeda, K. Taki, S. H. Jung, E. Babu, P. Jutabha, S. Khamdang, M. Aleboyeh, M. L. Onodera, A. Tojo, A. Enomoto, N. Anzai, S. Narikawa, X. L. Huang, T. Niwa, and H. Endou. Interactions of human organic anion transporters with diuretics. J. Pharmacol. Exp. Ther (2003).Google Scholar
  176. 176.
    J. E. van Montfoort, M. Muller, G. M. Groothuis, D. K. Meijer, H. Koepsell, and P. J. Meier. Comparison of "type I" and "type II" organic cation transport by organic cation transporters and organic anion-transporting polypeptides. J. Pharmacol. Exp. Ther. 298:110-115 (2001).Google Scholar
  177. 177.
    V. Gorboulev, J. C. Ulzheimer, A. Akhoundova, I. Ulzheimer-Teuber, U. Karbach, S. Quester, C. Baumann, F. Lang, A. E. Busch, and H. Koepsell. Cloning and characterization of two human polyspecific organic cation transporters. DNA Cell Biol. 16:871-881 (1997).Google Scholar
  178. 178.
    D. Grundemann, B. Schechinger, G. A. Rappold, and E. Schomig. Molecular identification of the corticosteronesensitive extraneuronal catecholamine transporter. Nat. Neurosci. 1:349-351 (1998).Google Scholar
  179. 179.
    D. Grundemann, C. Hahne, R. Berkels, and E. Schomig. Agmatine is efficiently transported by non-neuronal monoamine transporters extraneuronal monoamine transporter (EMT) and organic cation transporter 2 (OCT2). J. Pharmacol. Exp. Ther. 304:810-817 (2003).Google Scholar
  180. 180.
    S. P. Cole, K. E. Sparks, K. Fraser, D. W. Loe, C. E. Grant, G. M. Wilson, and R. G. Deeley. Pharmacological characterization of multidrug resistant MRP-transfected human tumor cells. Cancer Res. 54:5902-5910 (1994).Google Scholar
  181. 181.
    K. Koike, T. Kawabe, T. Tanaka, S. Toh, T. Uchiumi, M. Wada, S. Akiyama, M. Ono, and M. Kuwano. A canalicular multispecific organic anion transporter (cMOAT) antisense cDNA enhances drug sensitivity in human hepatic cancer cells. Cancer Res. 57:5475-5479 (1997).Google Scholar
  182. 182.
    T. Kawabe, Z. S. Chen, M. Wada, T. Uchiumi, M. Ono, S. Akiyama, and M. Kuwano. Enhanced transport of anticancer agents and leukotriene C4 by the human canalicular multispecific organic anion transporter (cMOAT/MRP2). FEBS Lett. 456:327-331 (1999).Google Scholar
  183. 183.
    L. Payen, A. Courtois, J. P. Campion, A. Guillouzo, and O. Fardel. Characterization and inhibition by a wide range of xenobiotics of organic anion excretion by primary human hepatocytes. Biochem. Pharmacol. 60:1967-1975 (2000).Google Scholar
  184. 184.
    J. H. Hooijberg, H. J. Broxterman, M. Kool, Y. G. Assaraf, G. J. Peters, P. Noordhuis, R. J. Scheper, P. Borst, H. M. Pinedo, and G. Jansen. Antifolate resistance mediated by the multidrug resistance proteins MRP1 and MRP2. Cancer Res. 59:2532-2535 (1999).Google Scholar
  185. 185.
    R. B. Kim, M. F. Fromm, C. Wandel, B. Leake, A. J. Wood, D. M. Roden, and G. R. Wilkinson. The drug transporter Pglycoprotein limits oral absorption and brain entry of HIV-1 protease inhibitors. J. Clin. Invest. 101:289-294 (1998).Google Scholar
  186. 186.
    J. W. Polli, J. L. Jarrett, S. D. Studenberg, J. E. Humphreys, S. W. Dennis, K. R. Brouwer, and J. L. Woolley. Role of Pglycoprotein on the CNS disposition of amprenavir (141W94), an HIV protease inhibitor. Pharm. Res. 16:1206-1212 (1999).Google Scholar
  187. 187.
    K. Ueda, N. Okamura, M. Hirai, Y. Tanigawara, T. Saeki, N. Kioka, T. Komano, and R. Hori. Human P-glycoprotein transports cortisol, aldosterone, and dexamethasone, but not progesterone. J. Biol. Chem. 267:24248-24252 (1992).Google Scholar
  188. 188.
    J. P. Marie, C. Helou, D. Thevenin, A. Delmer, and R. Zittoun. In vitro effect of P-glycoprotein (P-gp) modulators on drug sensitivity of leukemic progenitors (CFU-L) in acute myelogenous leukemia (AML). Exp. Hematol. 20:565-568 (1992).Google Scholar
  189. 189.
    R. B. Kim, C. Wandel, B. Leake, M. Cvetkovic, M. F. Fromm, P. J. Dempsey, M. M. Roden, F. Belas, A. K. Chaudhary, D. M. Roden, A. J. Wood, and G. R. Wilkinson. Interrelationship between substrates and inhibitors of human CYP3A and Pglycoprotein. Pharm. Res. 16:408-414 (1999).Google Scholar
  190. 190.
    M. F. Fromm, R. B. Kim, C. M. Stein, G. R. Wilkinson, and D. M. Roden. Inhibition of P-glycoprotein-mediated drug transport: A unifying mechanism to explain the interaction between digoxin and quinidine. Circulation 99:552-557 (1999).Google Scholar
  191. 191.
    R. Advani, G. A. Fisher, B. L. Lum, J. Hausdorff, J. Halsey, M. Litchman, and B. I. Sikic. A phase I trial of doxorubicin, paclitaxel, and valspodar (PSC 833), a modulator of multidrug resistance. Clin. Cancer Res. 7:1221-1229 (2001).Google Scholar
  192. 192.
    I. C. van der Sandt, M. C. Blom-Roosemalen, A. G. de Boer, and D. D. Breimer. Specificity of doxorubicin versus rhodamine-123 in assessing P-glycoprotein functionality in the LLCPK1, LLC-PK1:MDR1 and Caco-2 cell lines. Eur. J. Pharm. Sci. 11:207-214 (2000).Google Scholar
  193. 193.
    B. L. Lum, G. A. Fisher, N. A. Brophy, A. M. Yahanda, K. M. Adler, S. Kaubisch, J. Halsey, and B. I. Sikic. Clinical trials of modulation of multidrug resistance. Pharmacokinetic and pharmacodynamic considerations. Cancer 72:3502-3514 (1993).Google Scholar
  194. 194.
    A. Soldner, U. Christians, M. Susanto, V. J. Wacher, J. A. Silverman, and L. Z. Benet. Grapefruit juice activates Pglycoprotein-mediated drug transport. Pharm. Res. 16:478-485 (1999).Google Scholar
  195. 195.
    L. C. Floren, I. Bekersky, L. Z. Benet, Q. Mekki, D. Dressler, J. W. Lee, J. P. Roberts, and M. F. Hebert. Tacrolimus oral bioavailability doubles with coadministration of ketoconazole. Clin. Pharmacol. Ther. 62:41-49 (1997).Google Scholar
  196. 196.
    H. Spahn-Langguth, G. Baktir, A. Radschuweit, A. Okyar, B. Terhaag, P. Ader, A. Hanafy, and P. Langguth. P-glycoprotein transporters and the gastrointestinal tract: evaluation of the potential in vivo relevance of in vitro data employing talinolol as model compound. Int. J. Clin. Pharmacol. Ther. 36:16-24 (1998).Google Scholar
  197. 197.
    D. Jung and G. A. Kullak-Ublick. Hepatocyte nuclear factor 1_: a key mediator of the effect of bile acids on gene expression. Hepatology 37:622-631 (2003).Google Scholar
  198. 198.
    N. J. Cherrington, D. P. Hartley, N. Li, D. R. Johnson, and C. D. Klaassen. Organ distribution of multidrug resistance proteins 1, 2, and 3 (Mrp1, 2 and 3) mRNA and hepatic induction of Mrp3 by constitutive androstane receptor activators in rats. J. Pharmacol. Exp. Ther. 300:97-104 (2002).Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  1. 1.Division of Drug Delivery and DispositionUniversity of North Carolina at Chapel HillChapel Hill

Personalised recommendations