Pharmaceutical Research

, Volume 21, Issue 4, pp 641–648 | Cite as

The Characteristics and Mechanisms of Uptake of PLGA Nanoparticles in Rabbit Conjunctival Epithelial Cell Layers

  • Mohamed G. Qaddoumi
  • Hideo Ueda
  • Johnny Yang
  • Jasmine Davda
  • Vinod Labhasetwar
  • Vincent H. L. LeeEmail author


Purpose. To delineate the characteristics and mechanisms of up- take of biodegradable poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles in primary cultured rabbit conjunctival epithelial cells (RCECs).

Methods. Poly(d,l-lactide-co-glycolide) nanoparticles (PLGA 50:50, 100 nm in diameter) containing 6-coumarin (as a fluorescent marker) were used. The effect of size was studied using various particle sizes (100 nm, 800 nm, and 10 μm). The effect of cytochalasin D, nocodazole, and metabolic inhibitors on nanoparticle uptake was investigated. The capability of nanoparticles to enhance the uptake of an encapsulated protein, BSA bound to Texas red (TR-BSA), was evaluated.

Results. Maximal uptake of nanoparticles at 37°C occurred at 2 h, and 100-nm particles had the highest uptake in RCECs in comparison with 800-nm and 10-μm particles. Nanoparticle uptake was saturable over the 0.1-4 mg/ml concentration range. Nanoparticle uptake was confirmed by confocal microscopy and was inhibited significantly by coumarin-free nanoparticles (of similar size), by lower incubation temperature, and by the presence of metabolic inhibitors and cytochalasin D. The uptake of encapsulated TR-BSA in RCECs at 4 h was 28% higher than free BSA application.

Conclusion. Our findings suggest that PLGA nanoparticle uptake in primary cultured rabbit conjunctival epithelial cells occurs most likely by adsorptive-type endocytosis.

absorption endocytosis ocular drug delivery ophthalmic polymeric microparticles. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. L. Bourlais, L. Acar, H. Zia, P. A. Sado, T. Needham, and R. Leverge. Ophthalmic drug delivery systems—recent advances. Prog. Retin. Eye Res. 17:33-58 (1998).Google Scholar
  2. 2.
    R. Wood, V. Li, J. Kreuter, and J. Robinson. Ocular disposition of poly-hexyl-2-cyano [3-14C] acrylate nanoparticles in the albino rabbit. Int. J. Pharm. 23:175-183 (1985).Google Scholar
  3. 3.
    A. Zimmer, P. Chetoni, M. Saettone, and H. Zerbe, and J. Kreuter. Evaluation of pilocarpine-loaded albumin nanoparticles as controlled drug delivery systems for the eye. II co-administration with bioadhesive and viscous polymers. J. Controll. Rel. 33:31-46 (1995).Google Scholar
  4. 4.
    A. Zimmer, J. Kreuter, and J. R. Robinson. Studies on the transport pathway of PBCA nanoparticles in ocular tissues. J. Microencapsul. 8:497-504 (1991).Google Scholar
  5. 5.
    L. Marchal-Heussler, D. Sirbat, M. Hoffman, and P. Maincent. Poly(epsilon-caprolactone) nanocapsules in carteolol ophthalmic delivery. Pharm. Res. 10:386-390 (1993).Google Scholar
  6. 6.
    M. Hashizoe, Y. Ogura, T. Takanashi, N. Kunou, Y. Honda, and Y. Ikada. Biodegradable polymeric device for sustained intravitreal release of ganciclovir in rabbits. Curr. Eye Res. 16:633-639 (1997).Google Scholar
  7. 7.
    R. Diepold, J. Kreuter, J. Himber, R. Gurny, V. H. Lee, J. R. Robinson, M. F. Saettone, and O. E. Schnaudigel. Comparison of different models for the testing of pilocarpine eyedrops using conventional eyedrops and a novel depot formulation (nanoparticles). Graefes Arch. Clin. Exp. Ophthalmol. 227:188-193 (1989).Google Scholar
  8. 8.
    D. K. Gilding and A. M. Reed. Biodegradable polymers for use in surgery: poly(glycolic) / poly(lactic acid) homo-and copolymers. Polymer 20:1459-1464 (1979).Google Scholar
  9. 9.
    P. N. Dilly. Contribution of the epithelium to the stability of the tear film. Trans. Ophthalmol. Soc. U. K. 104:381-389 (1985).Google Scholar
  10. 10.
    K. M. Hamalainen, K. Kananen, S. Auriola, K. Kontturi, and A. Urtti. Characterization of paracellular and aqueous penetration routes in cornea, conjunctiva, and sclera. Invest. Ophthalmol. Vis. Sci. 38:627-634 (1997).Google Scholar
  11. 11.
    P. Saha, T. Uchiyama, K. J. Kim, and V. H. Lee. Permeability characteristics of primary cultured rabbit conjunctival epithelial cells to low molecular weight drugs. Curr. Eye Res. 15:1170-1174 (1996).Google Scholar
  12. 12.
    J. Davda and V. Labhasetwar. Characterization of nanoparticle uptake by endothelial cells. Int. J. Pharm. 233:51-59 (2002).Google Scholar
  13. 13.
    U. B. Kompella, K. J. Kim, and V. H. Lee. Active chloride transport in the pigmented rabbit conjunctiva. Curr. Eye Res. 12:1041-1048 (1993).Google Scholar
  14. 14.
    P. Saha, K. J. Kim, and V. H. Lee. A primary culture model of rabbit conjunctival epithelial cells exhibiting tight barrier properties. Curr. Eye Res. 15:1163-1169 (1996).Google Scholar
  15. 15.
    J. J. Yang, H. Ueda, K. Kim, and V. H. Lee. Meeting future challenges in topical ocular drug delivery: development of an air-interfaced primary culture of rabbit conjunctival epithelial cells on a permeable support for drug transport studies. J Controll. Rel. 65:1-11 (2000).Google Scholar
  16. 16.
    M. P. Desai, V. Labhasetwar, E. Walter, R. J. Levy, and G. L. Amidon. The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent. Pharm. Res. 14:1568-1573 (1997).Google Scholar
  17. 17.
    P. Calvo, M. J. Alonso, J. L. Vila-Jato, and J. R. Robinson. Improved ocular bioavailability of indomethacin by novel ocular drug carriers. J. Pharm. Pharmacol. 48:1147-1152 (1996).Google Scholar
  18. 18.
    G. Wang, I. G. Tucker, M. S. Roberts, and L. W. Hirst. In vitro and in vivo evaluation in rabbits of a controlled release 5-fluorouracil subconjunctival implant based on poly(D,L-lactide-coglycolide). Pharm. Res. 13:1059-1064 (1996).Google Scholar
  19. 19.
    M. K. Pratten and J. B. Lloyd. Uptake of microparticles by rat visceral yolk sac. Placenta 18:547-552 (1997).Google Scholar
  20. 20.
    W. P. Jollie. Ultrastructural studies of protein transfer across rodent yolk sac. Placenta 7:263-281 (1986).Google Scholar
  21. 21.
    T. A. Gottlieb, I. E. Ivanov, M. Adesnik, and D. D. Sabatini. Actin microfilaments play a critical role in endocytosis at the apical but not the basolateral surface of polarized epithelial cells. J. Cell Biol. 120:695-710 (1993).Google Scholar
  22. 22.
    L. Manil, J. C. Davin, C. Duchenne, C. Kubiak, J. Foidart, P. Couvreur, and P. Mahieu. Uptake of nanoparticles by rat glomerular mesangial cells in vivo and in vitro. Pharm. Res. 11:1160-1165 (1994).Google Scholar
  23. 23.
    J. A. Oka, M. D. Christensen, and P. H. Weigel. Hyperosmolarity inhibits galactosyl receptor-mediated but not fluid phase endocytosis in isolated rat hepatocytes. J. Biol. Chem. 264:12016-12024 (1989).Google Scholar
  24. 24.
    C. Witschi and R. J. Mrsny. In vitro evaluation of microparticles and polymer gels for use as nasal platforms for protein delivery. Pharm. Res. 16:382-390 (1999).Google Scholar
  25. 25.
    E. Sander and C. Ashworth. A study of particulate intestinal absorption and hepatocellular uptake. Exp. Cell Res. 22:137-145 (1961).Google Scholar
  26. 26.
    Y. Horibe, K. Hosoya, K. J. Kim, T. Ogiso, and V. H. Lee. Polar solute transport across the pigmented rabbit conjunctiva: size dependence and the influence of 8-bromo cyclic adenosine monophosphate. Pharm. Res. 14:1246-1251 (1997).Google Scholar
  27. 27.
    P. Steuhl and J. W. Rohen. Absorption of horseradish peroxidase by the conjunctival epithelium of monkeys and rabbits 1. Graefes Arch. Clin. Exp. Ophthalmol. 220:13-18 (1983).Google Scholar
  28. 28.
    S. Latkovic and S. E. Nilsson. Phagocytosis of latex microspheres by the epithelial cells of the guinea pig conjunctiva. Acta Ophthalmol. (Copenh.) 57:582-590 (1979).Google Scholar
  29. 29.
    J. L. Goldstein, M. S. Brown, R. G. Anderson, D. W. Russell, and W. J. Schneider. Receptor-mediated endocytosis: concepts emerging from the LDL receptor system. Annu. Rev. Cell Biol. 1:1-39 (1985).Google Scholar
  30. 30.
    Y. Sai, M. Kajita, I. Tamai, J. Wakama, T. Wakamiya, and A. Tsuji. Adsorptive-mediated endocytosis of a basic peptide in enterocyte-like Caco-2 cells. Am. J. Physiol. 275:G514-G520 (1998).Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • Mohamed G. Qaddoumi
    • 1
  • Hideo Ueda
    • 1
  • Johnny Yang
    • 1
  • Jasmine Davda
    • 3
  • Vinod Labhasetwar
    • 3
    • 4
  • Vincent H. L. Lee
    • 1
    • 2
    Email author
  1. 1.Department of Pharmaceutical SciencesUniversity of Southern CaliforniaLos Angeles
  2. 2.Department of OphthalmologyUniversity of Southern CaliforniaLos Angeles
  3. 3.Department of Pharmaceutical SciencesUniversity of Nebraska Medical CenterOmaha
  4. 4.Biochemistry and Molecular BiologyUniversity of Nebraska Medical CenterOmaha

Personalised recommendations