Pharmaceutical Research

, Volume 21, Issue 3, pp 476–483 | Cite as

3H Dendrimer Nanoparticle Organ/Tumor Distribution

  • Shraddha S. Nigavekar
  • Lok Yun Sung
  • Mikel Llanes
  • Areej El-Jawahri
  • Theodore S. Lawrence
  • Christopher W. Becker
  • Lajos Balogh
  • Mohamed K. Khan


Purpose. To determine the in vivo biodistribution for differently charged poly(amidoamine) (PAMAM) dendrimers in B16 melanoma and DU145 human prostate cancer mouse tumor model systems.

Methods. Neutral (NSD) and positive surface charged (PSD) generation 5 (d =5 nm) PAMAM dendrimers were synthesized by using 3H-labeled acetic anhydride and tested in vivo. Dendrimer derivatives were injected intravenously, and their biodistribution was determined via liquid scintillation counting of tritium in tissue and excretory samples. Mice were also monitored for acute toxicity.

Results. Both PSD and NSD localized to major organs and tumor. Dendrimers cleared rapidly from blood, with deposition peaking at 1 h for most organs and stabilizing from 24 h to 7 days postinjection. Maximal excretion occurred via urine within 24 h postinjection. Neither dendrimer showed acute toxicity.

Conclusions. Changes in the net surface charge of polycationic PAMAMs modify their biodistribution. PSD deposition into tissues is higher than NSD, although the biodistribution trend is similar. Highest levels were found in lungs, liver, and kidney, followed by those in tumor, heart, pancreas, and spleen, while lowest levels were found in brain. These nanoparticles could have future utility as systemic biomedical delivery devices.

biodistribution melanoma PAMAM dendrimers prostate cancer tritiated nanoparticles 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Balogh, A. Bielinska, J. D. Eichman, R. Valluzzi, I. Lee, J. R. Baker, T. S. Lawrence, and M. K. Khan. Dendrimer nanocomposites in medicine. Chimica Oggi/Chemistry Today 20:35-40 (2002).Google Scholar
  2. 2.
    R. Esfand and D. A. Tomalia. Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug Discov. Today 6:427-436 (2001).Google Scholar
  3. 3.
    J. F. G. A. Jansen, E. M. M. de Brabander-van den Berg, and E. W. Meijer. Encapsulation of guest molecules into a dendritic box. Science 266:1226-1229 (1994).Google Scholar
  4. 4.
    J. D. Eichman, A. U. Bielinska, J. F. Kukowska-Latallo, and J. R. Baker. The use of PAMAM dendrimers in the efficient transfer of genetic material into cells. Pharmaceutical Science and Technology Today 3:232-245 (2000).Google Scholar
  5. 5.
    J. F. Kukowska-Latallo, A. U. Bielinska, J. Johnson, R. Spindler, D. A. Tomalia, and J. R. Baker Jr. Efficient transfer of genetic material into mammalian cells using Starburst polyamidoamine dendrimers. Proc. Natl. Acad. Sci. U. S. A. 93:4897-4902 (1996).Google Scholar
  6. 6.
    A. Bielinska, J. F. Kukowska-Latallo, J. Johnson, D. A. Tomalia, and J. R. Baker Jr. Regulation of in vitro gene expression using antisense oligonucleotides or antisense expression plasmids transfected using starburst PAMAM dendrimers. Nucleic Acids Res. 24:2176-2182 (1996).Google Scholar
  7. 7.
    R. Delong, K. Stephenson, T. Loftus, M. Fisher, S. Alahari, A. Nolting, and R. L. Juliano. Characterization of complexes of oligonucleotides with polyamidoamine starburst dendrimers and effects on intracellular delivery. J. Pharm. Sci. 86:762-764 (1997).Google Scholar
  8. 8.
    H. Yoo, P. Sazani, and R. L. Juliano. PAMAM dendrimers as delivery agents for antisense oligonucleotides. Pharm. Res. 16:1799-1804 (1999).Google Scholar
  9. 9.
    N. Malik, E. G. Evagorou, and R. Duncan. Dendrimer-platinate: a novel approach to cancer chemotherapy. Anticancer Drugs 10:767-776 (1999).Google Scholar
  10. 10.
    B. Raduchel, H. Schmitt-Willich, J. Platzek, W. Ebert, T. Frenzel, B. Misselwitz, and H. J. Weinmann. Synthesis and characterization of novel dendrimer-based gadolinium complexes as MRI contrast agents for the vascular system. Proc. Amer. Chem. Soc. Polym. Mater. Sci. Eng. 79:516-517 (1998).Google Scholar
  11. 11.
    H. Kobayashi, N. Sato, S. Kawamoto, T. Saga, A. Hiraga, T. L. Haque, T. Ishimori, J. Konishi, K. Togashi, and M. W. Brechbiel. Comparison of the macromolecular MR contrast agents with ethylenediamine-core versus ammonia-core generation-6 polyamidoamine dendrimer. Bioconjug. Chem. 12:100-107 (2001).Google Scholar
  12. 12.
    L. P. Balogh, S. S. Nigavekar, A. C. Cook, L. Minc, and M. K. Khan. Development of dendrimer-gold radioactive nanocomposites to treat cancer microvasculature. PharmaChem 2:94-99 (2003).Google Scholar
  13. 13.
    A. Bielinska, J. D. Eichman, I. Lee, J. R. Baker, and L. Balogh. Imaging Au0-PAMAM gold-dendrimer nanocomposites in cells. J. Nanoparticle Res. 4:395-403 (2002).Google Scholar
  14. 14.
    A. Quintana, E. Raczka, L. Piehler, I. Lee, A. Myc, I. Majoros, A. K. Patri, T. Thomas, J. Mule, and J. R. Baker Jr. Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor. Pharm. Res. 19:1310-1316 (2002).Google Scholar
  15. 15.
    S. Shukla, G. Wu, M. Chatterjee, W. Yang, M. Sekido, L. A. Diop, and R. Muller. S. J. J., R. J. Lee, R. F. Barth, and W. Tjarks. Synthesis and biological evaluation of folate receptor-targeted boronated PAMAM dendrimers as potential agents for neutron capture therapy. Bioconjug. Chem. 14:158-167 (2003).Google Scholar
  16. 16.
    J. C. Roberts, M. K. Bhalgat, and R. T. Zera. Preliminary biological evaluation of polyamidoamine (PAMAM) Starburst dendrimers. J. Biomed. Mater. Res. 30:53-65 (1996).Google Scholar
  17. 17.
    J. Peterson, V. Allikmaa, J. Subbi, T. Pehk, and M. Lopp. Structural deviations in poly(amidoamine) dendrimers: a MALDI-TOF MS analysis. European Polymer J. 39:33-42 (2003).Google Scholar
  18. 18.
    D. A. Tomalia, A. M. Naylor, and W. A. Goddard III. Starburst dendrimers: molecular-level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter. Angewandte Chemie International Edition English 29:138-175 (1990).Google Scholar
  19. 19.
    I. J. Majoros, B. Keszler, S. Wochler, T. Bull, and J. R. Baker Jr. Acetylation of poly(amidoamine) dendrimers. Macromolecules 36:5526-5529 (2003).Google Scholar
  20. 20.
    M. S. O'Reilly, L. Holmgren, Y. Shing, C. Chen, R. A. Rosenthal, M. Moses, W. S. Lane, Y. Cao, E. H. Sage, and J. Folkman. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79:315-328 (1994).Google Scholar
  21. 21.
    D. S. Wilbur, P. M. Pathare, D. K. Hamlin, K. R. Buhler, and R. L. Vessella. Biotin reagents for antibody pretargeting. 3. Synthesis, radioiodination, and evaluation of biotinylated starburst dendrimers. Bioconjug. Chem. 9:813-825 (1998).Google Scholar
  22. 22.
    C. Zhang, S. O'Brien, and L. Balogh. Comparison and Stability of CdSe Nanocrystals Covered with Amphiphilic Poly(Amidoamine) Dendrimers. J. Phys. Chem. B. 106:10316-10321 (2002).Google Scholar
  23. 23.
    J. Folkman. Tumor Angiogenesis. In J. F. Holland, R. C. Bast Jr., D. L. Morton, E. Frie III, D. W. Kufe, and R. R. Weichselbaum (eds.), Cancer Medicine, 4th edition, Williams and Wilkens, Baltimore, 1996, pp. 181-204.Google Scholar
  24. 24.
    J. Folkman. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat. Med. 1:27-31 (1995).Google Scholar
  25. 25.
    H. Hashizume, P. BalukZ, S. Morikawa, J. W. McLean, G. Thurston, S. Roberge, R. K. Jain, and D. M. McDonald. Openings between defective endothelial cells explain tumor vessel leakiness. Am. J. Pathol. 156:1363-1380 (2000).Google Scholar
  26. 26.
    L. F. Brown, M. Detmar, K. Claffey, J. A. Nagy, D. Feng, A. M. Dvorak, and H. F. Dvorak. Vascular permeability factor/vascular endothelial growth factor: a multifunctional angiogenic cytokine. EXS 79:233-269 (1997).Google Scholar
  27. 27.
    T. W. Grunt, A. Lametschwandtner, and K. Karrer. The characteristic structural features of the blood vessels of the Lewis lung carcinoma (a light microscopic and scanning electron microscopic study). Scan. Electron Microsc. (Pt 2)2:575-89. (1986).Google Scholar
  28. 28.
    P. A. Stewart, K. Hayakawa, C. L. Farrell, and R. F. Del Maestro. Quantitative study of microvessel ultrastructure in human peritumoral brain tissue. Evidence for a blood-brain barrier defect. J. Neurosurg. 67:697-705 (1987).Google Scholar
  29. 29.
    J. M. Brown and A. J. Giaccia. The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res. 58:1408-1416 (1998).Google Scholar
  30. 30.
    M. El-Sayed, M. F. Kiani, M. D. Naimark, A. H. Hikal, and H. Ghandehari. Extravasation of poly(amidoamine) (PAMAM) dendrimers across microvascular network endothelium. Pharm. Res. 18:23-28 (2001).Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • Shraddha S. Nigavekar
    • 1
  • Lok Yun Sung
    • 1
  • Mikel Llanes
    • 1
  • Areej El-Jawahri
    • 1
  • Theodore S. Lawrence
    • 1
  • Christopher W. Becker
    • 2
  • Lajos Balogh
    • 3
  • Mohamed K. Khan
    • 1
  1. 1.Department of Radiation OncologyUniversity of MichiganAnn Arbor
  2. 2.Michigan Memorial Phoenix ProjectUniversity of MichiganAnn Arbor
  3. 3.Department of Internal Medicine, Center for Biologic NanotechnologyUniversity of MichiganAnn Arbor

Personalised recommendations