Advertisement

Pharmaceutical Research

, Volume 21, Issue 3, pp 406–412 | Cite as

Chemosensitivity Assessed by Collagen Gel Droplet Embedded Culture Drug Sensitivity Test, and MDR1, MRP1, and MRP2 mRNA Expression in Human Colorectal Adenocarcinomas

  • Takako Nakahara
  • Toshiyuki Sakaeda
  • Tsutomu Nakamura
  • Takao Tamura
  • Chiharu Nishioka
  • Nobuo Aoyama
  • Noboru Okamura
  • Toshiro Shirakawa
  • Akinobu Gotoh
  • Takashi Kamigaki
  • Masakazu Ohno
  • Yoshikazu Kuroda
  • Masafumi Matsuo
  • Masato Kasuga
  • Katsuhiko OkumuraEmail author
Article

Abstract

Purpose. To evaluate chemosensitivity and its correlation with expression levels of the multidrug resistant transporter (MDR1) and the multidrug resistance-associated proteins 1 and 2 (MRP1, MRP2) mRNA in human colorectal adenocarcinomas.

Methods. Colorectal adenocarcinomas were obtained as surgical samples from 25 patients. The chemosensitivity of 12 anticancer drugs was assessed by the collagen gel droplet embedded culture drug sensitivity test (CD-DST). The expression levels of MDR1, MRP1, and MRP2 mRNA in colorectal adenocarcinomas were also evaluated by real-time quantitative reverse transcription-polymerase chain reaction (RT-PCR).

Results. The chemosensitivity was successfully evaluated for 16 of 25 patients, and the anticancer drugs were effective against the samples showing a relatively high growth rate. Gemcitabine hydrochloride was found to be more promising than those often prescribed for the treatment of colorectal adenocarcinoma. There was no correlation of the mRNA expression levels of MDR1 and MRP1 with the chemosensitivity of any anticancer drugs tested, but mitomycin C was found to be more effective for the colorectal adenocarcinoma with relatively high expression of MRP2 mRNA.

CD-DST chemosensitivity gemcitabine human colorectal adenocarcinomas MDR1 mitomycin C MRP1 MRP2 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. E. Bogden, W. Griffin, S. D. Reich, M. E. Costanza, and W. R. Cobb. Predictive testing with the subrenal capsule assay. Cancer Treatment Rev. 11(supplementA):113-124 (1984).Google Scholar
  2. 2.
    S. E. Salmon, A. W. Hamburger, B. Soehnlen, B. G. M. Durie D. S. Alberts, and T. E. Moon. Quantitation of differential sensitivity of human-tumor stem cells to anticancer drugs. N. Engl. J. Med. 298:1321-1327 (1978).Google Scholar
  3. 3.
    D. D. von Hoff, J. Cowan, G. Harris, and G. Reisdorf. Human tumor cloning: feasibility and clinical correlations. Cancer Chemother. Pharmacol. 6:265-271 (1981).Google Scholar
  4. 4.
    M. Rozencweig, V. Hofmann, C. Sanders, W. Rombaut, U. Fruh, and G. Martz. In vitro growth of human malignancies in a cloning assay. Recent Results Cancer Res. 94:1-7 (1984).Google Scholar
  5. 5.
    N. Tanigawa, D. H. Kern, Y. Hikasa, and D. L. Morton. Rapid assay for evaluating the chemosensitivity of human tumors in soft agar culture. Cancer Res. 42:2159-2164 (1982).Google Scholar
  6. 6.
    D. H. Kern, C. R. Drogemuller, M. C. Kennedy, S. U. Hildebrand-Zanki, N. Tanigawa, and V. K. Sondak. Development of a miniaturized, improved nucleic acid precursor incorporation assay for chemosensitivity testing of human solid tumors. Cancer Res. 45:5436-5441 (1985).Google Scholar
  7. 7.
    T. Kondo, T. Imamura, and H. Ishihashi. In vitro test for sensitivity of tumor to carcinostatic agents. Jpn. J. Cancer Res. (Gann) 57:113-121 (1966).Google Scholar
  8. 8.
    T. Mosmann. Rapid colorometric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65:55-63 (1983).Google Scholar
  9. 9.
    J. Carmichael, W. G. DeGraff, A. F. Gazdar, J. D. Minna, and J. B. Mitchell. Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res. 47:936-942 (1987).Google Scholar
  10. 10.
    R. A. Vescio, C. H. Redfern, T. J. Nelson, S. Ugoretz, P. H. Stern, and R. M. Hoffman. In vivo-like drug responses of human tumors growing in three-dimensional gel-supported primary culture. Proc. Natl. Acad. Sci. U.S.A. 84:5029-5033 (1987).Google Scholar
  11. 11.
    T. Kubota, N. Sasano, O. Abe, I. Nakao, E. Kawamura, T. Saito, M. Endo, K. Kimura, H. Demura, H. Sasano, H. Nagura, N. Ogawa, R. M. Hoffman, and the Chemosensitivity Study Group for the Histoculture Drug-Response Assay. Potential of the histoculture drug-response assay to contribute to cancer patient survival. Clin. Cancer Res. 1:1537-1543 (1995).Google Scholar
  12. 12.
    A. E. Freeman and R. M. Hoffman. In vivo-like growth of human tumors in vitro. Proc. Natl. Acad. Sci. U.S.A. 83:2694-2698 (1986).Google Scholar
  13. 13.
    H. Kobayashi, K. Tanisaka, O. Doi, K. Kodama, M. Higashiyama, H. Nakagawa, M. Miyake, T. Taki, S. Hara, M. Yasutomi, Y. Hanatani, K. Kotake, and T. Kubota. An in vitro chemosensitivity test for solid human tumors using collagen gel droplet embedded cultures. Int. J. Oncol. 11:449-455 (1997).Google Scholar
  14. 14.
    H. Kobayashi, M. Higashiyama, K. Minamigawa, K. Tanisaka, K. Takano, H. Yokouchi, K. Kodama, and T. Hata. Examination of in vitro chemosensitivity test using collagen gel droplet culture method with colorimetric endpoint quantification. Jpn. J. Cancer Res. 92:203-210 (2001).Google Scholar
  15. 15.
    Y. Takamura, H. Kobayashi, T. Taguchi, K. Motoyama, H. Inaji, S. Noguchi. Prediction of chemotherapeutic response by collagen gel droplet embedded culture-drug sensitivity test in human breast cancers. Int. J. Cancer 98:450-455 (2002).Google Scholar
  16. 16.
    N. Tanigawa, A. Kitaoka, M. Yamakawa, K. Tanisaka, and H. Kobayashi. In vitro chemosensitivity testing of human tumors by collagen gel droplet culture and image analysis. Anticancer Res. 16:1925-1930 (1996).Google Scholar
  17. 17.
    M. Higashiyama, K. Kodama, H. Yokouchi, K. Takami, O. Doi, H. Kobayashi, K. Tanisaka, and K. Minamigawa. Immunohistochemical p53 protein status in nonsmall cell lung cancer is a promising indicator in determining in vitro chemosensitivity to some anticancer drugs. J. Surg. Oncol. 68:19-24 (1998).Google Scholar
  18. 18.
    M. Higashiyama, Y. Miyoshi, K. Kodama, H. Yokouchi, K. Takami, M. Nishijima, T. Nakayama, H. Kobayashi, K. Minamigawa, and Y. Nakamura. p53-regulated GML gene expression in non-small cell lung cancer: a promising relationship to cisplatin chemosensitivity. Eur. J. Cancer 36:489-495 (2000).Google Scholar
  19. 19.
    M. Higashiyama, K. Kodama, H. Yokouchi, K. Takami, H. Nakagawa, F. Imamura, K. Minamigawa, and H. Kobayashi. Cisplatin-based chemotherapy for postoperative reccurence in non-small cell lung cancer patients: relation of the in vitro chemosensitive test to clinical response. Oncol. Rep. 8:279-283 (2001).Google Scholar
  20. 20.
    Y. Hanatani, H. Kobayashi, S. Kodaira, H. Takami, T. Asagoe, E. Kaneshiro An in vitro chemosensitivity test for gastric cancer using collagen gel droplet embedded culture. Oncol. Rep. 7:1027-1033 (2000).Google Scholar
  21. 21.
    H. Yasuda, T. Takada, K. Wada, H. Amano, T. Isaka, M. Yoshida, T. Uchida, and N. Toyota. A new in-vitro drug sensitivity test (collagen-gel droplet embedded-culture drug sensitivity test) in carcinomas of pancreas and biliary tract: possible clinical utility. J. Hepatobiliary Pancreat. Surg. 5:261-268 (1998).Google Scholar
  22. 22.
    T. Sakaeda, T. Nakamura, and K. Okumura. MDR1 genotype-related pharmacokinetics and pharmacodynamics. Biol. Pharm. Bull. 25:1391-1400 (2002).Google Scholar
  23. 23.
    T. Sakaeda, T. Nakamura, and K. Okumura. Pharmacogenetics of MDR1 and its impact on the pharmacokinetics and pharmacodynamics of drugs. Pharmacogenomics 4:397-410 (2003).Google Scholar
  24. 24.
    R. G. Tirona and R. B. Kim. Pharmacogenomics of drug transporters. In J. Licinio and M.-L. Wong (eds.), Pharmacogenomics. The Search for Individualized Therapies, Wiley-VCH Verlag GmbH, Germany, 2002, pp. 179-213.Google Scholar
  25. 25.
    T. Nakamura, T. Sakaeda, N. Ohmoto, T. Tamura, N. Aoyama, T. Shirakawa, T. Kamigaki, T. Nakamura, K. I. Kim, S. R. Kim, Y. Kuroda, M. Matsuo, M. Kasuga, and K. Okumura. Real-time quantitative polymerase chain reaction for MDR1, MRP1, MRP2, and CYP3A-mRNA levels in Caco-2 cell lines, human duodenal enterocytes, normal colorectal tissues, and colorectal adenocarcinomas. Drug Metab. Dispos. 30:4-6 (2002).Google Scholar
  26. 26.
    T. Nakamura, T. Sakaeda, M. Horinouchi, T. Tamura, N. Aoyama, T. Shirakawa, M. Matsuo, M. Kasuga, and K. Okumura. Effect of the mutation (C3435T) at exon 26 of the MDR1 gene on expression level of MDR1 messenger ribonucleic acid in duodenal enterocytes of healthy Japanese subjects. Clin. Pharmacol. Ther. 71:297-303 (2002).Google Scholar
  27. 27.
    T. Sakaeda, T. Nakamura, M. Hirai, T. Kimura, A. Wada, T. Yagami H. Kobayashi, S. Nagata, N. Okamura, T. Yoshikawa, T. Shirakawa, A. Gotoh, M. Matsuo, and K. Okumura. MDR1 upregulated by apoptotic stimuli suppresses apoptotic signaling. Pharm. Res. 19:1323-1329 (2002).Google Scholar
  28. 28.
    Y.-W. Liu, T. Sakaeda, K. Takara, T. Nakamura, N. Ohmoto, C. Komoto, H. Kobayashi, T. Yagami, N. Okamura, and K. Okumura. Effects of reactive oxygen species on cell proliferation and death in HeLa and its MDR1-overexpressing derivative cell line. Biol. Pharm. Bull. 26:278-281 (2003).Google Scholar
  29. 29.
    M. Kool, M. de Haas, G. L. Scheffer, R. J. Scheper, M. J. van Eijk, J. A. Jujin, and P. Borst. Analysis of expression of cMOAT (MRP2), MRP3, MRP4, and MRP5, homologues of the multi-drug resistance-associated protein gene (MRP1), in human cancer cell lines. Cancer Res. 57:3537-3547 (1997).Google Scholar
  30. 30.
    X. Y. Chu, Y. Kato, and Y. Sugiyama. Multiplicity of biliary excretion mechanisms for irinotecan, CPT-11, and its metabolites in rats. Cancer Res. 57:1934-1938 (1997).Google Scholar
  31. 31.
    E. Hinoshita, T. Uchiumi, K. Taguchi, N. Kinukawa, M. Tsuneyoshi, Y. Maehara, K. Sugimachi, and M. Kuwano. Increased expression of an ATP-binding cassette superfamily transporter, multidrug resistance protein 2, in human colorectal carcinoma. Clin. Cancer Res. 6:2401-2407 (2000).Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • Takako Nakahara
    • 1
  • Toshiyuki Sakaeda
    • 2
  • Tsutomu Nakamura
    • 2
  • Takao Tamura
    • 1
  • Chiharu Nishioka
    • 1
  • Nobuo Aoyama
    • 3
  • Noboru Okamura
    • 2
  • Toshiro Shirakawa
    • 4
  • Akinobu Gotoh
    • 4
    • 5
  • Takashi Kamigaki
    • 6
  • Masakazu Ohno
    • 6
  • Yoshikazu Kuroda
    • 6
  • Masafumi Matsuo
    • 5
  • Masato Kasuga
    • 1
  • Katsuhiko Okumura
    • 2
    Email author
  1. 1.Division of Diabetes, Digestive, and Kidney Diseases, epartment of Clinical Molecular MedicineKobe University Graduate School of MedicineChuo-ku, KobeJapan
  2. 2.Department of Hospital Pharmacy, School of MedicineKobe UniversityChuo-ku, KobeJapan
  3. 3.Department of Endoscopy, School of MedicineKobe UniversityChuo-ku, KobeJapan
  4. 4.Division of Urology, Department of Organs Therapeutics, Faculty of MedicineKobe University Graduate School of MedicineChuo-ku, KobeJapan
  5. 5.Division of Gene Diagnosis & Gene Therapy, Department of Clinical Genetics and International Center for Medical Research, School of MedicineKobe UniversityChuo-ku, KobeJapan
  6. 6.Division of Gastroenterological Surgery, Department of Clinical Molecular MedicineKobe University Graduate School of MedicineChuo-ku, KobeJapan

Personalised recommendations