Pharmaceutical Research

, Volume 21, Issue 2, pp 201–230

Solubilizing Excipients in Oral and Injectable Formulations

Article

Abstract

A review of commercially available oral and injectable solution formulations reveals that the solubilizing excipients include water-soluble organic solvents (polyethylene glycol 300, polyethylene glycol 400, ethanol, propylene glycol, glycerin, N-methyl-2-pyrrolidone, dimethylacetamide, and dimethylsulfoxide), non-ionic surfactants (Cremophor EL, Cremophor RH 40, Cremophor RH 60, d-α-tocopherol polyethylene glycol 1000 succinate, polysorbate 20, polysorbate 80, Solutol HS 15, sorbitan monooleate, poloxamer 407, Labrafil M-1944CS, Labrafil M-2125CS, Labrasol, Gellucire 44/14, Softigen 767, and mono- and di-fatty acid esters of PEG 300, 400, or 1750), water-insoluble lipids (castor oil, corn oil, cottonseed oil, olive oil, peanut oil, peppermint oil, safflower oil, sesame oil, soybean oil, hydrogenated vegetable oils, hydrogenated soybean oil, and medium-chain triglycerides of coconut oil and palm seed oil), organic liquids/semi-solids (beeswax, d-α-tocopherol, oleic acid, medium-chain mono- and diglycerides), various cyclodextrins (α-cyclodextrin, β-cyclodextrin, hydroxypropyl-β-cyclodextrin, and sulfobutylether-β-cyclodextrin), and phospholipids (hydrogenated soy phosphatidylcholine, distearoylphosphatidylglycerol, l-α-dimyristoylphosphatidylcholine, l-α-dimyristoylphosphatidylglycerol). The chemical techniques to solubilize water-insoluble drugs for oral and injection administration include pH adjustment, cosolvents, complexation, microemulsions, self-emulsifying drug delivery systems, micelles, liposomes, and emulsions.

excipients oral formulations parenteral formulations solubilization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

references

  1. 1.
    R. Liu (ed.). Water-Insoluble Drug Formulation, Interpharm Press, Denver, Colorado, 2000.Google Scholar
  2. 2.
    Physician's Desk Reference, 57rd ed., Medical Economics Company, Inc., Montvale, NJ, 2003.Google Scholar
  3. 3.
    Web sites: www.rxlist.com, www.fda.gov/cder, www.croda.com/pharma/index.htm, www.sasol.com, www.gattefosse.com/pharma/pharma.htm, www.basf.de/pharma.com, www.cydexinc.com, www.atrixlabs.com, www.accessdata.fda.gov/scripts/cder/iig/index.cfm.Google Scholar
  4. 4.
    A. L. Trissel. Handbook on Injectable Drugs, 11th ed., American Society of Health-System Pharmacists, Inc., Bethesda, MD, 2001.Google Scholar
  5. 5.
    Y-C. J. Wang and R. R. Kowal. Review of excipients and pH's for parenteral products used in the United States. J. Parent. Sci. Technol. 34:452-462 (1980).Google Scholar
  6. 6.
    S. Sweetana and M. J. Akers. Solubility principles and practices for parenteral dosage form development. J. Parent. Sci. Technol. 50:330-342 (1996).Google Scholar
  7. 7.
    M. F. Powell, T. Nguyen, and L. Baloian. Compendium of excipients for parenteral formulations. J. Parent. Sci. Technol. 52:238-311 (1998).Google Scholar
  8. 8.
    R. G. Strickley. Parenteral formulations of small molecule therapeutics marketed in the United States (1999)—Part I. J. Parent. Sci. Technol. 53:324-349 (1999).Google Scholar
  9. 9.
    R. G. Strickley. Parenteral formulations of small molecule therapeutics marketed in the United States (1999)—Part II. J. Parent. Sci. Technol. 54:69-96 (2000).Google Scholar
  10. 10.
    R. G. Strickley. Parenteral formulations of small molecule therapeutics marketed in the United States (1999)—Part II. J. Parent. Sci. Technol. 54:152-169 (2000).Google Scholar
  11. 11.
    S. Yoshioka and V. Stella. Stability of Drugs and Dosage Forms, Kluwer Academic/Plenum Publishers, New York, 2000.Google Scholar
  12. 12.
    J. S Trivedi and M. L. Wells. Solubilization using cosolvent approach. In R. Liu (ed.), Water-Insoluble Drug Formulation, Interpharm Press, Denver, Colorado, 2000, pp. 141-168.Google Scholar
  13. 13.
    R. A. Rajexski and V. J. Stella. Pharmaceutical applications of cyclodextrins. II. In vivo drug delivery. J. Pharm. Sci. 85:1142-1169 (1996).Google Scholar
  14. 14.
    R. G. Strickley and B. D. Anderson. Solubilization and stabilization of an anti-HIV thiocarbamate, NSC 629243, for parenteral delivery using extemporaneous emulsions. Pharm. Res. 10:1076-1082 (1993).Google Scholar
  15. 15.
    S. E. Tabibi and S. L. Gupta. Soft gelatin capsules development. In R. Liu (ed.), Water-Insoluble Drug Formulation, Interpharm Press, Denver, Colorado, 2000, pp. 609-633.Google Scholar
  16. 16.
    Shionogi Qualicaps, Inc. Web site: http://www.qualicaps.com/shionogi/Capsules/Products.html.Google Scholar
  17. 17.
    E. T. Cole, R. A. Scott, A. L. Connor, I. R. Widding, H-U Petereit, C. Schminke, T. Beckert, and C. Cade. Enteric coated HPMC capsules designed to achieve intestinal targeting. Int. J. Pharm. 231:83-95 (2002).Google Scholar
  18. 18.
    CTP Plasro Web site: www.p.lasro.com.Google Scholar
  19. 19.
    R. Pidgeon. PVOH developments offer new possibilities. Packaging Magazine June 26:3(2003).Google Scholar
  20. 20.
    Arkopharma Laboratories Pharmaceutiques Web site: www.arkopharma.com/english/IndexProduits.html.Google Scholar
  21. 21.
    Physician's Desk Reference, 54th ed., Medical Economics Company, Inc., Montvale, NJ, 2000.Google Scholar
  22. 22.
    D. Law, S. L. Krill, E. A. Schmitt, J. J. Fort, Y. Qiu, W. Wang, and R. R. Porter. Physicochemical considerations in the preparation of amorphous ritonavir-poly(ethylene glycol) 8000 solid dispersions. J. Pharm. Sci. 90:1015-1025 (2001).Google Scholar
  23. 23.
    S. Budavari (ed.). The Merck Index, 13th ed., Merck Research Laboratories Division of Merck & Co., Inc., Whitehouse Station, NJ, 2001.Google Scholar
  24. 24.
    J. Alsenz, H. Steffen, and R. Alex. Active apical secretory efflux of the HIV protease inhibitors saquinavir and ritonavir in caco-2 cell monolayers. Pharm. Res. 15:423-428 (1998).Google Scholar
  25. 25.
    V. Stella, J. Haslam, N. Yata, H. Okada, and S. Lindebaum. Enhancement of bioavailability of a hydrophobic amine antimalarial by formulation with oleic acid in a soft gelatin capsule. J. Pharm. Sci. 67:1375-1377 (1978).Google Scholar
  26. 26.
    R. C. Rowe, P. J. Sheskey, and P. J. Weller. Handbook of Pharmaceutical Excipients, Fourth Edition, Pharmaceutical Press, London, United Kingdom, and the American Pharmaceutical Association, Washington, DC, 2003.Google Scholar
  27. 27.
    Product literature, Gattefosse Corp., 372 Kinderkamack Road, Westwood, NJ 07675.Google Scholar
  28. 28.
    N. H. Shah, M. T. Carvajal, C. I. Patel, M. H. Infeld, and A. W. Malick. Self-emulsifying drug delivery systems (SEDDS) with polyglycolyzed glycerides for improving in vitro dissolution and oral absorption of lipophilic drugs. Int. J. Pharm. 106:15-23 (1994).Google Scholar
  29. 29.
    Physician's Desk Reference, 51st ed., Medical Economics Company, Inc., Montvale, NJ, 1997.Google Scholar
  30. 30.
    T. M. Abu. Serajuddin. Solid dispersion of poorly water-soluble drugs: early promises, subsequent problems, and recent breakthroughs. J. Pharm. Sci. 88:1058-1066 (1999).Google Scholar
  31. 31.
    Pharmacy Today. An Official Publication of the American Pharmaceutical Association 5:10(1999).Google Scholar
  32. 32.
    J. D. Cawley and M. H. Stern. Water-Soluble Tocopherol Derivatives, U.S. Patent No. 2,680,749 (1954).Google Scholar
  33. 33.
    S. H-W. Wu and W. K. Hopkins. Characteristics of D-α-tocopheryl PEG 1000 succinate for applications as an absorption enhancer in drug delivery systems. Pharm. Tech. 23:44-58 (1999).Google Scholar
  34. 34.
    L. Yu, A. Bridgers, J. Polli, A. Vickers, S. Long, A. Roy, R. Winnike, and M. Coffin. Vitamin-E-TPGS increases absorption flux of an HIV protease inhibitor by enhancing its solubility and permeability. Pharm. Res. 16:1812-1817 (1999).Google Scholar
  35. 35.
    S. Tenjarla. Microemulsions: an overview and pharmaceutical applications. Crit. Rev. Ther. Drug Carrier Syst. 16:461-521 (1999).Google Scholar
  36. 36.
    T. Loftsson and M. E. Brewster. Pharmaceutical applications of cyclodextrins. I. Drug solubilization and stabilization. J. Pharm. Sci. 85:1017-1024 (1996).Google Scholar
  37. 37.
    T. Irie and K. Uekama. Pharmaceutical applications of cyclodextrins. III. Toxicology issues and safety evaluation. J. Pharm. Sci. 86:147-162 (1997).Google Scholar
  38. 38.
    G. Mosher and D. Thompson. Complexation and cyclodextrins. In J. Swarbrick and J. C. Boylan (eds.), Encyclopedia of Pharmaceutical Technology, 2000, Vol. 19, Suppl. 2, pp. 49-88.Google Scholar
  39. 39.
    D. Thompson. Cyclodextrins-enabling excipients: their present and future use in pharmaceuticals. Crit. Rev. Ther. Drug Carrier Syst. 14:1-104 (1997).Google Scholar
  40. 40.
    W-Q. Tong. Applications of complexation in the formulation of insoluble compounds. In R. Liu (ed.), Water-Insoluble Drug Formulation, Interpharm Press, Denver, Colorado, 2000, pp. 111-140.Google Scholar
  41. 41.
    M. J. Akers. Excipient-drug interactions in parenteral formulations. J. Pharm. Sci. 91:2283-2306 (2002).Google Scholar
  42. 42.
    J. Napaporn, M. Thomas, K. A. Svetic, Z. Shahrokh, and G. A. Brazeau. Assessment of the myotoxicity of pharmaceutical buffers using an in vitro muscle model: Effect of pH, capacity, tonicity, and buffer type. Pharm. Dev. Tech. 5:123-130 (2000).Google Scholar
  43. 43.
    Y-C. Lee, P. D. Zocharski, and B. Samas. An intravenous formulation decision tree for discovery compound formulation development. Intl. J. Pharm 253:111-119 (2003).Google Scholar
  44. 44.
    G. A. Brazeau, B. Cooper, K. A. Svetic, C. L. Smith, and P. Gupta. Current perspectives on pain upon injection of drugs. J. Pharm. Sci. 87:667-677 (1998).Google Scholar
  45. 45.
    K. W. Reed and S. H. Yalkowsky. Lysis of human red blood cells in the presence of various cosolvents. J. Parent. Sci. Technol. 38:64-69 (1985).Google Scholar
  46. 46.
    K. W. Reed and S. H. Yalkowsky. Lysis of human red blood cells. II. The effect of differing NaCl concentrations. J. Parent. Sci. Technol. 40:88-95 (1986).Google Scholar
  47. 47.
    J. F. Krzyaniak, D. M. Raymond, and S. H. Yalkowsky. Lysis of human red blood cells 1: effect of contact time on water induced hemolysis. J. Pharm. Sci. Tech. 50:223-226 (1996).Google Scholar
  48. 48.
    J. F. Krzyaniak, D. M. Raymond, and S. H. Yalkowsky. Lysis of human red blood cells 2: effect of contact time on cosolvent induced hemolysis. Int. J. Pharm. 152:193-200 (1997).Google Scholar
  49. 49.
    R. C-C. Fu, D. M. Lidgate, J. L. Whatley, and T. McCullough. The biocompatibility of parenteral vehicles-in vitro/in vivo screening comparison and the effect of excipients on hemolysis. J. Parent. Sci. Technol. 41:164-168 (1987).Google Scholar
  50. 50.
    P. Montaguti, E. Melloni, and E. Cavalletti. Acute intravenous toxicity of dimethyl sulfoxide, polyethylene glycol 400, dimethylformamide, absolute ethanol, and benzyl alcohol in inbred mouse strains. Arzneim.-Forsch/Drug Res. 44:566-570 (1994).Google Scholar
  51. 51.
    G. A. Brazeau and H-L. Fung. Physicochemical properties of binary organic cosolvent-water mixtures and their relationships to muscle damage following intramuscular injection. J. Parent. Sci. Technol. 43:144-149 (1989).Google Scholar
  52. 52.
    G. A. Brazeau and H-L. Fung. Use of an in vitro model for the assessment of muscle damage from intramuscular injections: in vitro-in vivo correlation and predictability with mixed cosolvent systems. Pharm. Res. 6:766-771 (1989).Google Scholar
  53. 53.
    G. A. Brazeau and H-L. Fung. Effect of organic solvent-induced skeletal muscle damage on the bioavailability of intramuscular 14C diazepam. J. Pharm. Sci. 79:773-777 (1990).Google Scholar
  54. 54.
    M. Radwan. In vivo screening model for excipients and vehicles used in subcutaneous injections. Drug Dev. Ind. Pharm. 20:2753-2762 (1994).Google Scholar
  55. 55.
    R. Dunn. Controlled drug delivery using in-situ gelled biodegradable polymer solutions. American Association of Pharmaceutical Scientists National Meeting, Denver, CO (2001).Google Scholar
  56. 56.
    R. Dunn. Application of the ATRIGEL implant drug delivery technology for patient-friendly, cost-effective product development. Drug Delivery Tech 3:38-44 (2003).Google Scholar
  57. 57.
    BASF Corporation Web site: www.basf.de/pharma and www.pharma-solutions.basf.com/pdf/pharma/excipients/ME151e_Solutol_HS15.pdf.Google Scholar
  58. 58.
    Personal communication, Brendan O'Leary, BASF Corporation. (2003).Google Scholar
  59. 59.
    R. G. Strickley, L. Liu, and P. Lapresca. Preclinical parenteral and oral formulations of water insoluble molecules. ISSX Meeting, Nashville, TN (USA) Abstract # 291 (1999).Google Scholar
  60. 60.
    R. Liu and N. Sadrzadeh. Micellization and drug solubility enhancement. In R. Liu (ed.), Water-Insoluble Drug Formulation, Interpharm Press, Denver, Colorado, 2000, pp. 213-277.Google Scholar
  61. 61.
    P. K. Gupta and J. B. Cannon. Emulsions and microemulsions for drug solubilization and delivery. In R. Liu (ed.), Water-Insoluble Drug Formulation, Interpharm Press, Denver, Colorado, 2000, pp. 169-211.Google Scholar
  62. 62.
    D. Thompson and D.M.V. Chaubai, Cyclodextrins (CDS)—excipients by definition, drug delivery systems by function (part I: injectable applications), Drug Deliv. 2:34-38 (2002).Google Scholar
  63. 63.
    Y. Kim, D. A. Oksanen, W. Massrfski, J. F. Blake, E. M. Duffy, and B. Chrunyx. Inclusion complexation of ziprasidone mesylate with β-cyclodextrin sulfobutylether. J. Pharm. Sci. 87:1560-1567 (1998).Google Scholar
  64. 64.
    Captisol Wins in Regulatory Hurdle, Cyclopedia Quarterly 4(1), (2001), CyDex, Inc.Google Scholar
  65. 65.
    Personal communication, Gerold L Mosher, Ph.D.and Karl W. Strohmeier, CyDex, Inc. (2001).Google Scholar
  66. 66.
    A. Y. Tinwalla, B. L. Hoesterey, T-X. Xiang, K. Lim, and B. D. Anderson. Solubilization of thiazolobenzimidazole using a combination of pH adjustment and complexation with 2-hydroxypropyl-β-cyclodextrin. Pharm. Res. 10:1136-1143 (1993).Google Scholar
  67. 67.
    T-X. Xiang and B. D. Anderson. Stable supersaturated aqueous solutions of silatecan 7-t-butyldimethylsilyl-10-hydroxy-camptothecin via chemical conversion in the presence of a chemically modified β-cyclodextrin. Pharm. Res. 19:1215-1222 (2002).Google Scholar
  68. 68.
    S.P. Apte and S.O. Ugwu. A review and classification of emerging excipients in parenteral medications. Pharm. Tech. 27:3:46-60 (2003).Google Scholar
  69. 69.
    L. A. Felton and J. W. McGinity. Enteric film coating of soft gelatin capsules. Drug Deliv. Tech. 3:46-51 (2003).Google Scholar
  70. 70.
    J. S. Woo, C. H. Lee, C. K. Shim, and S-J Hwang. Enhanced oral bioavailability of paclitaxel by coadministration of the P-glycoprotein inhibitor KR-30031. Pharm. Res. 20:24-30 (2003).Google Scholar
  71. 71.
    F. Mottu, A. Laurent, D. A. Rüfenacht, and E. Doelker. Organic solvents for pharmaceutical parenterals and embolic liquids: a review of toxicity data. J. Parent. Sci. Tech. 54:456-469 (2000).Google Scholar
  72. 72.
    Gattefossé Corporation Web site: www.gattefosse.com/pharma/products/transcup.Google Scholar
  73. 73.
    M-L Chen. Lipid based oral dosage forms—regulatory perspective. Am. Pharm. Rev. 5:30-35 (2002).Google Scholar
  74. 74.
    D. J. Hauss. Lipid-based systems for oral drug delivery: enhancing the bioavailability of poorly water-soluble drugs. Am. Pharm. Rev. 5:22-36 (2002).Google Scholar
  75. 75.
    W. C. Charman. Lipids, lipophilic drugs, and oral drug delivery—some emerging concepts. J. Pharm. Sci. 89:967-978 (2000).Google Scholar
  76. 76.
    R. Holm. C. J. H. Porter, A. Müllertz, H. G. Kristensen, and W. M. Charman. Structured triglyceride vehicles for oral delivery of halofantrine: examination of intestinal lymphatic transport and bioavailability in conscious rats. Pharm. Res. 19:1354-1361 (2002).Google Scholar
  77. 77.
    R. C. B. Gonzalez, J. Huwyler, I. Walter, R. Mountfield, and B. Bittner. Improved oral bioavailability of cyclosporin A in male Wistar rats comparison of a Solutol HS 15 containing self-dispersing formulation and a microsuspension. Intl. J. Pharm 245:143-151 (2002).Google Scholar
  78. 78.
    Y. V. R. Prasad, S. P. Puthli, S. Eaimtrakarn, M. Ishida, Y. Yoshikawa, N. Shibata, and K. Takada. Enhanced intestinal absorption of vancomycin with Labrasol and D-α-tocopherol PEG 1000 succinate in rats. Intl. J. Pharm. 250:181-190 (2003).Google Scholar
  79. 79.
    Southern Biosystems, Inc., Web site: www.southernbiosystems.com.Google Scholar
  80. 80.
    Durect Corporation Web site: www.durect.com.Google Scholar
  81. 81.
    A. V. Kabanov, E. V. Batrakova, and D. W. Miller. Pluronic blocks as modulators of drug efflux transporter activity in the blood-brain barrier. Adv. Drug. Del. Rev. 55:151-164 (2003).Google Scholar
  82. 82.
    E. D. Hugger, K. L. Audus, and R. T. Borchardt. Effects of polyethylene glycol on efflux transporters activity in Caco-2 cell monolayers. J. Pharm. Sci. 91:1980-1990 (2002).Google Scholar
  83. 83.
    E. D. Hugger, B. Novak, P. S. Burton, K. L. Audus, and R. T. Borchardt. A comparison of commonly used polyethoxylated pharmaceutical excipients on their ability to inhibit P-glycoprotein activity in vitro. J. Pharm. Sci. 91:1991-2002 (2002).Google Scholar
  84. 84.
    R. T. Borchardt, R. M. Freidinger, T. K. Sawyer, and P. L. Smith (eds.). Integration of Pharmaceutical Discovery and Development, Case Histories, Plenum Press, New York, 1998.Google Scholar
  85. 85.
    S. Venkatesh and R. A. Lipper. Role of the development scientist in compound lead selection and optimization. J. Pharm. Sci. 89:145-154 (2000).Google Scholar
  86. 86.
    E.F. “Gene” Fiese. General pharmaceutics—the new physical pharmacy. J. Pharm. Sci. 92:1331-1342 (2003).Google Scholar
  87. 87.
    W. Curatolo. Physical chemical properties of oral drug candidates in the discovery and exploratory development settings. Pharm. Sci. Tech. Today 1:387-393 (1998).Google Scholar
  88. 88.
    P. J. Sinko. Drug selection in early development: screening for acceptable pharmacokinetic properties using combined in vitro and computational approaches. Curr. Opin. Drug Disc. Dev. 2:42-48 (1999).Google Scholar
  89. 89.
    C. A. Lipinski, F. Lombardo, B. W. Dominy, and P. J. Feeney. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Del. Rev. 23:3-25 (1997).Google Scholar
  90. 90.
    P. H. Stahl and C. G. Wermuth (eds.). Handbook of Pharmaceutical Salts: Properties, Selection and Use, VHCA, Verlag Helvetica Chimica Acta, Zürich, and Wiley-VCH, Weinheim, 2002.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  1. 1.Formulation & Process DevelopmentGilead Sciences Inc.Foster City

Personalised recommendations