Pharmaceutical Research

, Volume 20, Issue 12, pp 1946–1951 | Cite as

Transdermal Delivery of Timolol and Atenolol Using Electroporation and Iontophoresis in Combination: A Mechanistic Approach

  • Anne-Rose Denet
  • Bernard Ucakar
  • Véronique Préat


Purpose. The purpose of this work was to study the effect of electroporation on iontophoretic transport of two β-blockers, timolol (lipophilic) and atenolol (hydrophilic), and to have a better understanding of the mechanism of combination.

Methods. The transdermal delivery of these β-blockers through human stratum corneum was studied in three-compartment diffusion cells. The transport of mannitol was evaluated to assess the electroosmotic flow.

Results. The iontophoretic transport of timolol was decreased by electroporation because the high accumulation of the lipophilic cation timolol in the stratum corneum resulted in a decrease of electroosmosis. In contrast, electroosmosis was not affected by atenolol, and the iontophoretic transport of atenolol was increased by electroporation.

Conclusions. Using two different β-blockers, we showed that lipophilicity and positive charges affect the electrotransport of drugs. Understanding the effect of the physicochemical properties of the drug, as well as the electrical parameters, is thus essential for the optimization of transdermal drug delivery by a combination of electroporation and iontophoresis.

transdermal drug delivery electroporation iontophoresis electroosmosis β-blockers 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. R. Prausnitz, V. G. Bose, R. Langer, and J. C. Weaver. Electroporation of mammalian skin: a mechanism to enhance transdermal drug delivery. Proc. Natl. Acad. Sci. USA 90:10504-10508 (1993).Google Scholar
  2. 2.
    R. Vanbever, N. Lecouturier, and V. Préat. Transdermal delivery of metoprolol by electroporation. Pharm. Res. 11:1657-1662 (1994).Google Scholar
  3. 3.
    R. H. Guy, Y. N. Kalia, M. B. Delgado-Charro, V. Merino, A. López, and D. Marro. Iontophoresis: electrorepulsion and electroosmosis. J. Control. Rel 64:129-132 (2000).Google Scholar
  4. 4.
    S. Mitragotri. Synergistic effect of enhancers for transdermal drug delivery. Pharm. Res. 17:1354-1359 (2000).Google Scholar
  5. 5.
    D. Bommannan, J. Tamada, L. Leung, and R. Potts. Effects of electroporation on transdermal iontophoretic delivery of leutinizing hormone releasing hormone. Pharm. Res. 11:1809-1814 (1994).Google Scholar
  6. 6.
    S. Chang, G. Hofmann, L. Zhang, L. Deftos, and A. Banga. The effect of electroporation on iontophoretic transdermal delivery of calcium regulating hormones. J. Control. Rel 66:127-133 (2000).Google Scholar
  7. 7.
    S. Bose, W. R. Ravis, Y. J. Lin, L. Zhang, G. A. Hofmann, and A. K. Banga. Electrically-assisted transdermal delivery of buprenorphine. J. Control. Rel 73:197-203 (2001).Google Scholar
  8. 8.
    A. V. Badkar and A. K. Banga. Electrically enhanced transdermal delivery of a macromolecule. J. Pharm. Pharmacol. 54:907-912 (2002).Google Scholar
  9. 9.
    H. Y. Zhao, J. M. Zheng, Y. Pan, and J. D. Song. Effect of electroporation and iontophoresis on skin permeation of Defibrase, a purified thrombin-like enzyme from the venom of Agkistrodon halys ussuriensis Emelianov. Pharmazie 57:482-484 (2002).Google Scholar
  10. 10.
    R. Conjeevaram, A. K. Banga, and L. Zhang. Electrically modulated transdermal delivery of fentanyl. Pharm. Res. 19:440-444 (2002).Google Scholar
  11. 11.
    J. Y. Fang, T. L. Hwang, Y. B. Huang, and Y. H. Tsai. Transdermal iontophoresis of sodium nonivamide acetate. V. Combined effect of physical enhancement methods. Int. J. Pharm. 235:95-105 (2002).Google Scholar
  12. 12.
    P. Modamio, C. F. Lastra, and E. L. Mariño. A comparative in vitro study of percutaneous penetration of β-blockers in human skin. Int. J. Pharm. 194:249-259 (2000).Google Scholar
  13. 13.
    J. Hirvonen, L. Murtomaki, and K. Kontturi. Experimental verification of the mechanistic model for transdermal transport including iontophoresis. J. Control. Release 56:169-174 (1998).Google Scholar
  14. 14.
    N. Kanikkannan, J. Singh, and P. Ramarao. Transdermal iontophoretic transport of timolol maleate in albino rabbits. Int. J. Pharm. 197:69-76 (2000).Google Scholar
  15. 15.
    N. Kanikkannan, J. Singh, and P. Ramarao. In vitro transdermal iontophoretic transport of timolol maleate: effect of age and species. J. Control. Release 71:99-105 (2001).Google Scholar
  16. 16.
    D. G. Fatouros and J. A. Bouwstra. Iontophoretic enhancement of timolol maleate across human skin in vitro: effect of current density. In Proceedings in Perspectives in Percutaneous Penetration, Antibes Juan-les-Pins, 2002, pp. 68.Google Scholar
  17. 17.
    J. Jacobsen. Buccal iontophoretic delivery of atenolol.HCl employing a new in vitro three-chamber permeation cell. J. Control. Release 70:83-95 (2001).Google Scholar
  18. 18.
    A.-R. Denet and V. Préat. Transdermal delivery of timolol by electroporation through human skin. J. Control. Rel 88:253-262 (2003).Google Scholar
  19. 19.
    A. Kim, P. G. Green, G. Rao, and R. H. Guy. Convective solvent flow across the skin during iontophoresis. Pharm. Res. 10:1315-1320 (1993).Google Scholar
  20. 20.
    R. Vanbever, M. A. Leroy, and V. Préat. Transdermal permeation of neutral molecules by skin electroporation. J. Control. Rel 54:243-250 (1998).Google Scholar
  21. 21.
    M. B. Delgado-Charro and R. H. Guy. Characterization of convective solvent flow during iontophoresis. Pharm. Res. 11:929-935 (1994).Google Scholar
  22. 22.
    J. Hirvonen and R. H. Guy. Iontophoretic delivery across the skin: electroosmosis and its modulation by drug substances. Pharm. Res. 14:1258-1263 (1997).Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Anne-Rose Denet
    • 1
  • Bernard Ucakar
    • 1
  • Véronique Préat
    • 1
  1. 1.Unité de Pharmacie GaléniqueUniversité Catholique de Louvain, UCL 7320BrusselsBelgium

Personalised recommendations